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Abstract

The increasing decentralization of computing resources and the proliferation of
personal and small business computers create new problems in computer security.
One such problem is the protection of externally supplied sofiware, i.e., software
supplied by other than the users/owners of these small compttrs. In the case of
personal and small business computers, propfietar software serves as the primary
example. In distributed systems comprised of aultonomously managed nodes,
members of the user community may act as vendors of external software in a less
formal context. In these contexts dual security requirements arise: vendors require
encapsulation of their software to prevent release and to detect modification of
information, whereas users require confinement of external software in order to
control its access to computer resources. The protection mechanisms deeloped to
support mutually suspicious subsystems in centralized systems are not directly
applicable here because of differences in the computing environment, e.g., (he riced
to protect external subsystems from physical attacks mounted by owners of these
small computers.

This thesis employs two tools to achieve the security requirements of vendors of
external software: tamper-resistant modules (TRMs) and cryptogri-phic techniques.
The former provide physical security, i.e., while the IRM is intact it prcvcnts the
release or modification of information contained within and breaking into a IRM
results in destruction (erasure) of the sensitive information inside. Packaging all of
the sensitive components of a computer system (processor and storage) in a single
TRM is often impractical, but selected portions of a system can be protected
effectively in this fashion. Cryptographic techniques are employed in tmo wa s in
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this applicationl: to Secure commu11.nication amnong TRWs and to protect information
field in physicaily unprotected storage outside a TRM.

These tools addres'; the problem of encap lating external softwvare but do not
provide the confinement required by uisers. External software can be confined in
two 'k avs: through the use of a sectire operating s~ stemi in colljun( tion M th a 'IRN
Supplied by a third-party or by providing separate processors fol' -(ndo10S andIL Users
anld eniplo) ing some simple haidw are to implement access con rol l 61 the user.
Designing smiall computer sysiemrS incor-poratinig these SecCurity fetReNS reCquireCs
careful analysis of a number of options in making tradeoffs amnong perfbrmance,
cost, flxibility and Security.

Keywords: cornputer security, protected subsystems, proprietary software,
cryptography, personal comnputers, distributed systems, Data Encryption Standard,
public-key cryptography
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Chapter One

Introduction

1.1 Motivation

The past several years have Aitnessed a marked growth in decentralization of

computing facilities. Evidence of this trend appears in the proliferation of personal

and small business computers and development of distributed computer systems

composed of autonomously managed computers. (This last class of computers is the

tbcus of much research and is described in more detail later in this section.) lThis

trend is the result of a number of factors including decreasing hardware costs and a

desire to tailor computing resources to individual and organizational needs 17).
Improved protection i of information is often listed aniong the advantages accruing

from decentralization of computing resources [33]. In many cases decentralization

does make protection easier but at least one security problem that has proven

tractable in centralized computers becomes more complex as a result of

decentralization. The characterization and solution of this problem is the subject of

this thesis.

1.1.1 Protection Problems That are Mitigated by Decentralization

The simplest security mechanisms implemented in centralized computers provide

complete isolation of users, perhaps allowing total sharing of some files [291.

l'hc terms proeclion and security arc used throughout this thesis to describe techniques for
controlling who may access a computer and the information storcd within it; they are not interpreted
to encompass threats such as natural disasefs.

12



Introduction

)ecentralized computers implicitly provide isolation since each user is supplied with

his own computer. (In fact, some of these colputers may support multiple users,

but the assumrption is that these users are equivalent for protection purposes.)

Moreover, the user need not rely on personnel at a central facility i0 protect his data.

lius simple isolation is better achieved using decentralized computers. More

sophisticated protection nchanisms in centralized conputers permit users to

explicitly Control which users lay access specific files and ,lhat type of access is

pernmitted, e.g., reading or writing. Controlled sharing in decentralized s)stenis is

readily accom plshed through imessage transmission over a coilluln nication network.

Such sharing may simpl)y involve transmitting files betwcen users or may he based

oil sophisticated schemes lbr lma naging distributcd databases.

When a network is used to selectively share information, communication security

imeasures are required to protect the transmitted data from disclosure and

undetected modification in transit and to securely identify isers to one another 1161

(providing the basis for access control decisions). These communication security

measures nay be provided in whole or part by the network or may be exclusively

the responsibility of the user, depending oil the site and geographic range of the

user community, network characteristics and user sCCiirity reqiiirements.

Nonetheless, it is often argued that controlled sharing is better achieved in

decentralized systems since such sharing takes place only through message

exchanges via a network rather than through shared memory interactions involving

an operating system and programs of other users [331.

Some security problems associated with borrowed programs also may be

mitigated in decentralized systems. The security concern here is that borrowed

software may contain a 7TrojanIl Horse [31, i.e., the software not only perfoirms its

advertised function but also engages in malicious activities. The assumption in this

case is that the lender of the software imposes no constraints on its use but that the

13



Introduction

hot Io,, cr \% all,s to ('o11 [,()1 access of the so t:ire to his dat:ui and he wants to prevent

thc solPt arc lIlom disclosing his dala Io other tius. llc protection mechanisms

rCquirCd to control access of hoi iotmcd so!'tmarc to user dala are the sanic for both

centrAlized and dcciintralized sydcnms. lrcenting borrowed softwire from

disclosing data to other users is dillicutlt or imlpossible in centralized s stems [291 but

la\ be leasible in decentralized computers, since essentially the only means of

leak ing information to the outside world is ,,i a a network. 'lls if a borrowed

program has no legitimate need For network access, or a ver.n restricted requiretnent

for such access, this problem is easily soked. (lBorro\ked programs that make

significant use of' a network as part of their normal fiFnction are not more easil)

confined in ceccntralized systems.)

1.1.2 Protecting Proprietary Software in Centralized Systems

The preceding discussion indicates that decentralization of computing simplifies

the problem of protecting information in many cases. Hovever, the problem of

protecting e.xicrnalli supplied software, i.e., software supplied by one party (the

vendor) for restricted use by another party (the client), becomes more difficult as a

result of decentralization. Proprietary software, sold or rented/leased by a vendor to

clients, is the primary example of external software but some distributed systems

provide other examples, as described later. Vendors want to restrict clients' access to

proprietary software, permitting execution but preventing disclosure of the software.

The concern here is that clients may illicitly re-distribute the software or may study

the software to extract proprietary algorithms. Vendors also may require a secure

accounting capability, including the ability to revoke a client's access to proprietary

software (prevent him from executing the software), in support of usage-based and

time-based billing policies. In centralized computers proprietary software usually is

offered (sold, rented or leased) for execution directly on a client's computer.

14



Introduction

However, sometimes proprietary software is made available for a Ike through a

service bureau (a computer ficility that sells computer time and services). "lie

protection measures available to a vendor depend on which way the software is

offered.

If proprietary softwrare is executed on a client's computer, a number of ad hoc

technological protection measu res are available to the %endor along with various

legal imeasures (tradc-secret licensing, contracts containing non-disclosu re clauses,

copyrights and patenls) [211. Some vendors do not explicitly attempt to protect their

software, helieving that various vendor-supplied support services are critical to

marketing of the soft"ware and that simple theft of the software is not a problem. In

many cases only object code is provided, in an eflort to conceal the algorithms

employed and to preclude maintenance by other than the vendor. Vendors may

even include extraneous code or engage in circuitous coding practices to deter a

client fiom extracting the underlying structure of tile program or to demonstrate the

origin of code in disputes over authorship [8]. Some vendors employ a simple form

of cryptographic coding, in which a "bootstrap" program decodes the proprietary

software prior to execution. Ilese technological mCasures usually are not employed

to protect databases and the only access revocation mechanism available to vendors

is the withholding ofenhancemnents and bug fixes for the software.

If proprietary software is made available to clients through a service bureau, the

vendor may take advantage of operating system protection mechanisms that allow

clients to execute but not read (copy) or modify the software, e.g., the ring

protection mechanisms of Multics [301. 'liese protection mechanisms may be quite

sophisticated, allowing the vendor to charge on a per-use or time basis, providing

quick revocation of access if a client fails to pay and protecting not only programs

but also databases associated with the proprietary software. However, clients using

proprietary software at a service bureau facility must trust the facility to safeguard

15
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Introduction

their in lormation, a problem that usually does not arise if tile software is executed

on the client's computer. The vendor also must trust the service bureau to act as his

agent, protecting his software and properly charging for its use. The client also must

pay for conmputing resources at the service bureau, an unnecessary expense for a

client with his own computer facilities. Moreover, clients with their own computer

facilities may be further penalized by having to maintain and further process

proprietary software input or output at the service bureau or by transporting this

data between their facilities and the service bureau.

There is substantial disagreement among vendors as to the effectiveness of either

legal or ad hoc technological icasures for protecting proprietary software. Yet

'endors of proprietary software do not seem to be deterred by this situation. In the

case of proprietary software executing on client equipment, the client is usually a

business or other institution for which there is insufficient financial incentive to

attempt to subvert the ad hoc technological measures or to risk the possible

repercussions of violating the legal protection measures. Thus the lack of Sound

technological protection mechanisms has not been a serious problem in this context.

Proprietary software made available through service bureaus can be protected from

clients and it is to the advantage of the service bureaus to provide such protection as

they gain financially by forcing users to procure lime from the bureaus to run this

software. The use of service bureaus as agents for proprietary software also has the

advantage that a large number of users can gain access to the software but only a

small number of facility personnel need he trusted by the vendor to protect the

software. In some instances the vendor of proprietary software may also operate the

service bureau, eliminating questions of vendor-service bureau mistrust. Finally,

some service bureau users cannot afford their own facilities and thus have no

alternative to this way of using proprietary software.

16
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Introduction

1.1.3 Effects of Decentralization on Protection of External Software

The same types of approaches to protecting externally supplied sollware are

available in the decentralized systems of interest, but the problem may be much

more severe in this context. If proprietary software is offered for direct execution on

client machines the available technological and legal protection measures may prove

inadequate in this marketplace. Some evidence already exists that cUrrent owners of

personal computers engage in extensive informal trading of proprietary so ftware, in

violation of contractual agreements and copyright laws. One supplier of proprietary

software for personal computers estimates that as many as 90% of the copies of his

software in use were not purchased friom him [24]. It nia be argued that this

alarming statistic is not representative of the market as a whole or that it is not

indicative of the fate of sales of such software in the future. In particular, it is

probably true that many of the current owners of personal computers are themselves

employed in the COmputer field and are thus more likely to delve into their system

hardware and software and engage in these activities than would the average naive

user.

However, it is difficult to predict the moral climate that will characterize users of

such systems and there are other reasons to fear that legal means will be insufficient

to protect proprietary software in the personal computer marketplace. The very size

of the projected personal computer marketplace and the possibility that a small

number of manufacturers may dominate this marketplace (resulting in a large body

of software compatible processors) make the emergence of "bootleg" copies of

proprietary software a likely event. Even in the case of relatively inexpensive

software, violations of copyright seem inevitable if an analogy to phonograph

records and home stereo systems can be made. Moreover, the growth of

commnmication networks makes distribution of both legitimate and purloined

copies of software easier, further complicating the situation. Vendors could offer

17



Introduction

proprietary software through service bureaus, to protect their interests, but this

negates many of the features brought about by decentralization, including improved

protection for user data. Owners of personal computers may balk at buying time

from a service bureau and paying for communications to access these centralized

facilities. Thus service bureaus are an inappropriate 2 and perhaps an unacceptable

means of offering proprietary software For personal computers.

The preceding comments were directed primarily at personal computers but it

seems likely that many of these observations apply to the small business computer

market as well. Although the size of this market (in numbers of machines) may not

approach that of personal computers, small business computers may proliferate

more quickly because their utility is, presumably, readily demonstrable. Small

businesses generally have greater purchasing power than individuals and thus more

sophisticated (and more costly) proprietary software may appear, increasing the

profit potential for vendor and pirate alike. It is hard to project the moral and

financial climate that will develop and thus difficult to determine how severe a

problem informal trading or sales of bootleged proprietary software may become.

Nonetheless, it seems prudent to assume that protection of proprietary software will

be as important for small business computers as for personal computers. Again,

providing proprietary software through service bureaus is contrary to the

decentralization trend and is probably unacceptable in this context. Thus there is a

great need for an improved means of protecting proprietary software executed in

personal and small business computers.

A slightly different requirement for protection of external software arises in the

context of distributed systems comprised of autonomously managed nodes. In these

2Only proprietary software that makes use of special facilities not available at the client's computer,

e.g., a flatbed plotter or array processing hardware, is best offered through a service bureau.

18



Introduction

distributed systems each node (computer) operates under the direction of an

independent user, but the users co-operate to provide some services, e.g., distributed

databases. Systems of this sort are a topic of current research and there are no

extant examples nor experience to draw upon. Nonetheless, one can project

protection requirements associated with a form of externall) supplied software in

this environment, i.e., software produced by a user/vendor at one node for

execution at nodes throughout the system. As an example, consider a distributed

database that is fully replicated at each node for robustness and for ease of access.

The database may contain son in formation that should not be accessible to some

users, even though every node maintains a copy of the database. 'l'hus each user

must rely on the database management soltware to enforce some advertised access

control policy at all the nodes.

In the case of a distributed database, the software at each node should prevent

unauthorized reading or updating (via messages) by other nodes. It also should

prevent unauthorized reading and detect Linauthorized update attempts by the node

owner. Although it might be possible to prevent a node owner fiom attempting

unauthorized updates to the database, such update attempts, if detected, will not

affect the integrity of the distributed database as a whole. This is because

distributed systems must be prepared to cope with local outages, e.g., a disk crash at

a node, without compromising the integrity of the entire database. Thus, if the

software at a node determines that a portion of its copY of the database is modified

as a result of an attempted unauthorized update by the node owner, the software

will treat that portion as damaged, and not affect other nodes.

In general, in these distributed systems, it seems desirable to be able to install

software at a node (with the permission of the node owner) which can be protected

from unauthorized disclosure and undetected modification. 'Ilie availability of

mechanisms that provide such protection for external software enhances
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significantly the flexibilitN of distributed systems composed of autonomous nodes.

I-ut e\ample, distributed instances of e\tcnded type managers [331 could be created

at one node and made available throutghout the system in a secure fashion. Objects

Could be created at one node and transmitted to other nodes with the assurance that

only the type manager for the objects would be able to examine and "appropriately"

modify the representation of the objects. Although a number of other mechanisms

are required to support this sort of object migration, the ability to protect copies of a

distributed t) pe manager at each node (from attacks by the node owner) is central to

the concept. These security requirements cannot be met by the use of a centralized

computing facility without seriously compromising the distributed nature of these

systems.

"'lic preceding discussion has shown how the need for protection of externally

supplied software in the decentralized systems of interest differs, in some respects,

from the need for such protection in centralized systems. First, the legal and ad hoc

technical measures employed to protect proprietary software executing on client

computers may be inadequate in the case of decentralized systems. Second, use of

proprietary software offered through service bureaus negates many of the

advantages of decentralization and thus may be unacceptable to users of personal

and small business computers. Finally, distributed systems composed of

autonomous nodes present new examples of externally supplied software which, if

they can be adequately protected, could significantly enhance the flexibility of such

systems. This suggests that improved technological measures for protecting

externally supplied software for execution on client computers are required for the

decentralized computer systems described in this section. The next section provides

a more precise statement of the problem and establishes criteria by which proposed

solutions will be evaluated.
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1.2 Problem Definition and Solution Criteria

The preceding section identified two examples of externally supplied software

that require protection in the decentralized systems environment: proprietary

programs for personal or small business computers and distributed applications

software for certain types of distributed systems. Thiis section examines in greater

detail the security requirements associated with these examples and abstracts from

them a general statement of the problem to be solved. '[le concept of prolected

subsystems in centralized systems is introduced and modified for use in the

decentralized systems context. Protected subsystems serve as the niodel for

discussing protection of external soltware. Some criteria for accepiable solutions are

presented and some solution approaches are evaluated with respect to those criteria.

1.2.1 Protected Subsystems as a Paradigm for Externally Supplied

Software

As noted in the preceding section, vendors require that proprietary software

(programs and attendant databases) be protected from disclosure and re-

distribution. In the extreme, disclosure may result in the complete exposure of the

inner workings of the program, enabling the attacker not only to make copies of this

software but also to understand the algorithms well enough to produce his own,

equivalent software. Less severe disclosure may occur if only portions of the

software are exposed or if only hints as to the algorithms cmployecd in the program

can be extracted, requiring significar !y more effort by an attacker to generate

equivalent software. On the other hand, it may be possible to re-distribute

programs without knowing their content, e.g., if the programs were encrypted but

the necessary cryptographic variables were not tnique to a single client. For

proprietary software that is rented or leased, I ecndor may require a secure

accotnting capability, including a revocation mechanism, in support of usage- or
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time-based billing policies. Finall., clients may wish to protect themselves from

pIroprietary software, treating it as a potential Trojan ltorse.

In the distributed systems conteyt described above, users acting as vendors of

external software ha%e analogous security requirements. Here there may not always

be a need to prevent disclosure of the programs (the algorithms used may not be

considered proprietary) but databases associated with this software probably require

concealment, as explained earlier. There is also a need to detect attacks that violate

the integrity of the software, to prevent spurious infornmation from being propagated

throughout a distributed system application. For example, a query directed to a

node maintaining a copy of a replicated database should either elicit a "correct"

response or should go unacknowledged, rather than returning a response based on

data that has been modified as a result of tampering. Although it might be

suggested that externally supplied software should be protected fiom mnodification,

it was noted above that merely detecting such attacks provides adequate security and

is in keeping with the auttonomous nature of the nodes. In particular, it is usually

assumed that a user may "unplug" his node from the communication network,

making all locally resident software and databases inaccessible to the remainder of

the distributed system.

A general statement of security requirements foi external software, from the

standpoint of vendors, can be abstracted from the preceding discussion. The

requirements are quite similar to those usually associated with protected subsystems

in centralized systems, although some slight modifications are necessary to account

for the scope of attacks to be considered. Schroeder [311 defines a protected

subsystem as "a collection of programs and data bases that is encapsulated so that

other executing programs can invoke only certain component programs within the

protected subsystem, but are prevented from reading or writing component

programs or data bases, and are prevented from disrupting the intended operation
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of the component programs." From the standpoint of vendors, cutcral solftmare

should be treated as protected subsystems with the caveat that modification

(writing) and disruption by physical attacks need not be prevented, only detected.

Note that detecting modification of code is often critical to preventing disclosure,

e.g., if an attacker can undetectably modify code, he might effect disclosure by

changing an address used in an output operation so that the program outputs itself!

The protected subsystem concept also models closely the securit) reqUirements of

clients (users) with respect to external software. Restricting software so that it is

granted appropriate access pri% ileges to the minimal collection of data and programs

required to perfbrnm its advertised function and so that it does not release that data

to others is referred to as confinemen [191. Clients require confinement of

externally supplied software to prevent release or modification of their own software

and other externally supplied software. Clients also can employ confinement

measures to restrict access of external software to various system resources. Thus

interactions between external software provided by different vendors or between

externally and locally supplied software should be characterized by mutual suspicion

and protection fiom program-based attacks should be symmetric For both classes of

software.

This discussion points out that vendors and clients have dual security

requirements. Vendors require external software to be protected against program-

based or physical attacks that result in release or undetected modification of

information or invocation at other than specified external interfaces. 'They also

require that this software not be re-distributable. Clients require external software

to be confined, i.e., they require protection from program-based attacks launched by

external software that would result in unauthorized release, modification or

invocation of other externally supplied or locally produced software. Clients also

require the ability to control the use of computer resources by external software.
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Although these Cquirements can he combined into a Ilirlk uniform statement about

Sui pportinrig mittill SUiSpICIOUS StLbsystenls and confinement, the above-noted

dichotomx between endor and client requirements is important since it suggests an

appropriate division of responsibility for achieving these requirements. The

primary goal of this thesik is the design of computers that meet vendor security

requirements, although systems that meet both sets of requirements are described in

Chapter 5.

1.2.2 Solution Evaluation Criteria

In addition to meeting the security requirements inoted above, protection

mechanisms for use with externally supplied software in decentralized computers

should meet some additional criteria.

Decentralization The protection mechanisms must themselves be decentralized.
The rationale here is that centralized approaches to providing
protection tend to negate the advantages gained from
decentralization.

Effectiveness The mechanisms should provide a unified approach to meeting
the securit) requirements over a broad spectrun of attacks. To
provide a given level of security, based on an anticipated threat
environment, only parameters of the mechanisms should be
changed, not the mechanisms themselves.

Generality/Flexibility
Ilie protection mechanisms should be applicable to a wide range
of applications executing on a variety of system configurations
and equipment. The mechanisms should not be dependent on a
particular technology or equipment type.

Low Cost The cost of equipment required to implement the protection
mechanisms must not be prohibitive. lhe "bottom line" is that
the use of the protection mechanisms should reduce losses by
more than the cost of the mechanisms themselves.
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Good Performance
The addition of protection mechanisms to a computer olktCn
degrades performance. Howe~er, one Muist strive to minimiie
the severity of any performance degradation.

Transparency Protection mechanisms should be unobtrusive, so that wiiters of
external software need not be very much aware of them. these
mechanisms should have little or no effect on the design of
external software.

This collection of criteria tends to rile Olt most measures currently emlployed to

protect proprietary software. For example, use of service bureaus to offer external

software is ruled out because it negates the advantages gained fron decentralization.

The ad hoc measures described in section 1.1.2 do not meet the effectiveness

criterion. These measures also do not provide a unified approach to protection nor

are they parameterizable to provide different levels of security for different

environments. The protection measures described in the next section attempt to

meet these criteria.

1.3 A Solution Approach

In order to meet the security requirements and evaluation criteria established in

Section 1.2, a combination of physical, cryptographic and software protection

measures are employed. Information stored or processed in computer system

components is protected from physical attacks resulting in disclosure or undetected

modification in one of two ways: by providing physical protection for a component

or by using cryptographic techniques to conceal and error check information stored

in or transmitted by the component. These basi2 techniques meet the security

requirements of vendors of external software and are sufficient in situations where

all of the external software executed on a computer is provided by a single vendor.

In more elaborate systems, where external software is supplied by several vendors or
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%her external soltware interacts with client-supplied software, more conventional

hardware and software security measures are employed in conjunction with the

preceding techniques to provide the security required by mutually suspicious

subsystems. This section briefly describes the proposed solution approach.

1.3.1 A System Model and Tamper-Resistant Modules

Before discussing the proposed solution approach, it is necessary to introduce a

simple model of the computer systems of interest. The model, shown in Figure 1-1,

consists of a processor (CiPU), three levels of storage: primary memory (P'-MEM),

secondary nmrnory (S-MEM) and transfer and archix al storage (T&A), and various

I/O peripherals, e.g., terminals or network interfaces. The only unuslial component

in this model is the transfer and archival (T&A) storage. This level of storage is used

in two ways: vendors may iransfer (distribute) copies of external software to clients

using this level and external software may use it for secure archival storage, hence

the name. (Vendors also may distribute external softwa're via communication

networks.) Storage media used at this level must be demountable and the files

contained therein are usually viewed as outside of the file system proper. llese two

characteristics distinguish T&A storage from secondary memory, i.e., secondary

memory need not be demountable and it contains the file system. The system

components are connected by a bus used for addressing and data transfer, like the

DEC UNIBUS [9] or the IEEE S-100 bus [11]. This architecture is typical of current

personal and small business computers and serves as the model for the computer

systems of interest.

If no precautions were taken, it is apparent that external software executing on

this hardware could be attacked in a number of ways that would violate the security

requirements of vendors. Physical attacks launched against the processor, bus or

any of the storage devices could result in disclosure or undetected modification of
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Figure I-I: A Simple Model of the Systems of Interest

information. (Other peripheral devices included in the model are not security

relevant since they do not store or process sensitive information.) It is obvious that

some form of physical protection is required, at least fbr the processor if not other

components. To evaluate the results of physically protecting portions of the system,

the concept of a lamper-resislani module (TRM) is introduced. All information

contained within a TRM is protected from disclosure and undetected modification

in the following sense. As long as the TRM is intact, data inside the module cannot

be discerned or modified by an attacker and if the TRM is breached the sensitive

data within is destroyed (erased). The implementation of TRMs will vary

considerably depending on the value of the external software being protected and

the perceived sophistication of potential attackers. For example, packaging

components on a single VLSI chip may provide adequate protection in some cases

whereas permanently sealed, seamless metal containers may be required in other

environments.

This thesis does not address the detailed problems of engineering tamper-

resistant modules, btit rather assumes that TRMs can be constructed to provide

whatever level of physical security is required to protect external software in the
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systems of interest. However, sonic observations can be made about characteristics

of"FRM-packaging. For example, TRM-packaging usually is not free and the cost

increases with the volume of the 'RM. Maintenance of components in a TRM may

be difficulh or impossible (if the TRM is permanently sealed). TRM-packaging may

impose constraints on system growth and may limit equipment selection. Since

sensitive data within a FRM must be destroyed if the 'rRM is opened, it may be

difficult to package large quantities of non-volatile storage. Fncapsulating

demountable storage media in TRMs also rna, pose problems. These and other

considerations suggest that packaiging an cntire Coimputer mithin a single TRM,

supplied by a vendor, is not an ideal wa) to protect c\ternal software provided by

that vendor. Many of the shortcomings of R M packaging can be avoided or at

least mitigated by using "I'RM packaging in conjunction with cr)ptographic

techniques.

1.3.2 Two Approaches to Protecting External Software

There are two basic ways to use cryptography in conjUnctionl with TRM

packaging: the encrypted bus approach and the encrjpted storage approach. In the

encrypted bus approach, the computer system is divided into several pieces, each

contained in a TRM. Communication between the TRM-packaged pieces is

provided by a physically unprotected bus. Here cryptographic techniques are used

to secure inter-TRM communication over the unprotected bus. In the encrypted

storage approach, the processor and some memory are packaged in a single TRM

and all other storage is physically unprotected. Here cryptographic techniques are

used to protect data held in physically unprotected storage and transmitted over the

unprotected portions of the bus. Both approaches offer an effective, decentralized

means of protecting external software but they differ in how well each meets other

criteria.
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P'MJE:Mj S A.MEI ]1Tother peripherals

Figure 1-2: An Encrypted Bus Approach System Configuration

Figure 1-2 illustrates one of several system configurations based on the encrypted

bus approach. In this configuration the processor and primary memory reside in

one TRM whereas secondary and T&A storage devices are packaged in separate

TRMs. (The bold boxes about these components represen! the TRM packaging.)

Communication among the TRMs is encrypted on the physically unprotected bus.

Partitioning the system in this fashion reduces sonic of the '[RM packaging

problems, e.g., this design results in smaller TRMs and it supports expansion

through adding or changing TRMs. It may even be possible to provide TRM-

packaged demountable media in this design fbr T&A storage, although secure

network communication offers a more practical means of' distributing external

software. Since all of the security relevant system components are protected by

TRMs only the bus can be attacked. To counter these attacks, each TRM is

equipped with a cr'ptographic bus initface (CI). The Cils employ cryptographic

techniques to conceal and error-check data and addresses transmitted on the bus,

thus preventing disclosure and detecting modification attacks.
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In many respects the bus functions as a miniature communication network in

which bus ,l)eratiollS correspond to messages. 'Tihe attacks to which bus operations

may be subjected are the same as those encountered in general purpose

communication networks, e.g., release of message contents and message stream

modification [161. Thus communication security techniques can be applied to

secure bus operations. However, bus communication is very special and many

standard communication security measures are not directly applicable here. For

example, IS transactions take place at very high speeds with low delay and involve

very small quantities of data. Protection mechanisms must be able to sustain

maximum transaction rates, introduce little or no delay on transacions and

minimize the number of additional bits transmitted for security purposes. Yet the

data and addresses in bus operations must be concealed and checked to verifry that

they are properly ordered and not modified in transmission.

However, some of the special characteristics of bus communication simplify the

task of scClring bus operations. Most bus communication is very stylized in nature

and this can be used to advantage in designing the encrypted bus protection

measures. For example, one can take advantage of the fact that data transfers

between primary memory and secondary or T&A storage involve data aggregates

(e.g., disk sectors) that can be protected as a whole, rather than on a per-bus-

operation basis. T11he high reliability and overall simplicity of bus communication

simplifies bus protection measures, avoiding the nced to provide eflicient error

recovery and/or to handle out-of-order message arrival. 'Tihe cryptographic

techniques developed for the encrypted bus approach are specially engineered to

take advantage of the eccentricities of bus communication while keeping up with

high transaction rates and minimizing overhead (delay and extra bits transmitted).

These techniques also cope with the problems posed by having TRM-packaged and

standard devices connected to the same bus.
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Computer system designs based on the encrypted buts ap~proach satisfy the criteria

for decentralization, effectiveness, good performance and transparency anid they are

fairly general. Althouigh this approach solves many of the problems encountered in

trying to package an entire computer as a TRM, some1 problems still remain. For

examp~le, in partitioning the system, the pieces muist not become too small or the

cost of IRM-packaging and CFBls will become excessive. It probably is not practical

to TRM-package deirrou~ntable media, yet such media niav be required for archival

stoageeve ifexternal sortware is distributed via networks. Problms 'in erasing

large quantities of non-volatile storage and the need for periodic maintenance may

prechlde packaging some storage devices asT'RMs. 11wi need to enclose all security

rele~ ant components in 'URMs also may limit eqUip)ment Choices. Thu1Ls this

approach is not as flexible as might be desired and the cost of URM( packaging may

be a problem.I

CPU

P-EMS-MEM * T&A * other peripherals

Fiue13 nEcrpe toaeAprahSstmCnigrto

Figure 1-3: osAn Encryted Storage pproach system configuration

comparable to the encrypted bus approach design in Figure 1-2. In this design thc

processor and primary memory are contained in a single I'RM buit secondary and
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I&A storage devices and the bus connecting these de iccs to the TRM are all

phsically unprotected. (The asterisks in the figure indicate storage containing

encrypted data.) The TRIM is cquipped with a secure storage inietface (SSI) that

employs cryptographic techniques to conceal and error-check data stored in these

devices, to prevent disclosure and detect modification. This design provides

excellent flexibility, generality and low cost. For example, the problem of building a

TRM capable of erasing large quantities of non-volatile storage is avoided in thle

illustrated design since secondary and T&A storage is outside the TRM. All

cquipment outside the TRM is "off-the-shelf," allowing the clients great Ilexihility

in selecting components and reducing costs. Ile fact that this design requires only

one special device, an SSI, also contributes to its low cost and simplicity.

In the encrypted storage approach, data is aggregated into storage units that are

read/written as an entity, e.g.. groups of files that are archived and reloaded

together (at the T&A storage level) or disk sectors (at the secondary storage level).

Each storage unit is encrypted independently, in a fashion that is a finction of both

its address (or name) and a version tag, and an error detection code is associated

with each unit. A table is maintained recording the current version tag associated

with each storage unit. (This table is either contained wholly inside the TRM or it is

stored outside the TRM and is protected using these measures recursively.) These

techniques not only conceal the contents of storage very effectively, but allow the

SSI to determine if a storage unit returned as the result of a read operation is from

the correct location and if it is the most recent data stored at that location. The

constraint that only the most recent copy of a storage unit be returned must be

tempered in some circumstances for archival storage and it is not applicable to

transfer storage (since such storage is read-only).

Except for designs in which primary memory is encrypted, i.e., located outside

the TRM, the cryptographic techniques employed in the encrypted storage
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approach do not encounter stringent performance constraints. File space rcquired

for error detection codes and for version tags is a very small fraction of that devoted

to "real" data storage, except in the case of encrypted primary memory. If primary

memory is encrypted, it is essential that the processor be equipped with a cache

memory, to reduce the fraction of space devoted to overhead and to mininize the

impact of delays imposed by encryption. Hierarchic structuring of the version tag

tables for secondary storage and primary memory avoids the nced to devote large

amounts of space to VI's and appropriate caching of portions of the hierarchy

minimizes the performance impact of this structuring. Computer system designs

based on the encrypted storage approach satisfy the criteria fbr decentralization,

effectiveness, Ilexibility, low cost and are fairly general. These designs are not as

transparent as those developed under the encrypted bus approach, largely due to the

need to maintain VIl's. '[heir performance is generally good, except for those

configurations in which primary memory is encrypted.

1.3.3 Two Approaches to Meeting Clients' Security Requirements

The preceding section briefly dcscribed two approaches to meeting the security

requirements of vendors. These approaches protect external software supplied by a

single vendor but they do not address the problems of meeting client security

requirements or of executing external software from multiple vendors on a single

computer system. These two problems are quite similar in that both require

protection mechanisms that allow software from vendors and from the client to

interact as mutually suspiciouIs subsystems. This can be accomplished in two ways.

A trusted third party can supply a TRM-packaged computer, based on one of the

two approaches described in the preceding section, with a secure operating system.

Both the client and the vendors must trust this computer to execute their software

while meeting one another's security requirements. Vendors can transfer external
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u.sing cr ptogaphI tcdkiti kc' ciphers [261. lllis approach

I cuires soni slndii, k(Oinal stwar. Ikonm multiple

,,etidos Lan be ex.'nt c indei the secure operating

s seic plo~ ided. lhe ii h' uh e %cl.is ard clients must rely

on the third-paurt\ to prodt,, ,,t1111 Y n and a secure I RM-based

computer.

An altcrnati\ e W this ap110,101 IN,, to ,ll 'l(ch LA enih1 i ilppl. iis own JRM-

pack a ed processi Ind mnr'l)I\ lii 10IILI II) 'd lT luh tl l Igl her tilnder the

control of a client processor. Fignie 1- illistrates ne a w) this could be

accomplished. In this example two vendors ha\c supplied IRMs. each containing a

processor and primar) memory. Sccondar\ aind l& A storage arc shared among the

TRMs and the client processor. "Tlhe client processor controls access to these and

other shared sistein resources through an access contirol hus coupler (ACBC). lhe

access control mechanisms used here are similar to those employed in centralized

systems but are somewhat simlnier to implement here due to the hardware isolation

provided by the design. This approach has the advantage that no mutual trust is

required since each vendor supplies his own TRM. This approach allows vendors to

select their own processor base but some standardization of TRM interfaces and

operating system interfaces is still required. It also remains to be seen if the cost of

TRMs can be reduced to a point at which this becomes economically feasible.

In distributed systems members of the user community need to act both as clients

and as vendors in writing and using external software. In fact, a user may act as both

client and vendor for the same software. A combination of the preceding two

approaches can be employed to meet this complex security requirement. Fach node

in the distributed system can consist of a client processor and a TRM supplied by a

third-party, configured as in Figure 1-4. The third-party TRM is used to execute
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ACB3

P-MEM S~E* T&A* other peripherals

Figure 1-4: A Mul1ti-TRM S 'Steni Collfiguirat ion

external software supplied by other memibers of the uiser coIMmuntity', treating each

user as a separate vendor. To solve the problem of vendors being their own clients,

another third-party TRM is Used to distribute thle locally produced external

software. In this fashion a wouild-be vendor subitIIs his software (source code) to an

instaltalion server TRM which compiles code and distributes it securely to the

TRMs at the user nodes. Since this softwar~e is not proprietary, (fie client-users can
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be allowed to review the source code and decide if they want to use the software. In

this fashion users can decide for themselves if some distributed application

implements an advertised security policy that achieves their requirements for

confinement.

1.4 Related Work

The central topic of this thesis, the development of protection measures for use

with externally supplied software in decentralized coMLputing Facilities, has received

little attention in the open literature. The general problem of protecting

information stored in centralized coniputer systems has been the subject of much

research. (See [291 for an excellent bibliograph).) Most of this research deals with

protection of information fiom program -based attack or with controlling physical

access to central computer facilities. Although the cowepts dereloped in such

research are applicable to the problem of protecting external software in

decentralized systems, most of the detailed mechanisms developed for centralized

systems are not relevant to this "physically hostile" environment. ihe major

exception is the use of a secure operating system to provide protected subsystems in

third-party, multi-vendor computer system designs. M LIti-vendor systems in which

each vendor supplies his own TRM also may make use of some conventional access

control mechanisms in managing shared resources.

There has been relatively little published research dealing with protection

problems in distributed systems. Much of this research assumes that the nodes that

make LIP the system are tinder the control of a single authority, e.g., see [51, as

opposed to the autonomous nodes considered in this thesis. In designing distributed

systems composed of autonomous nodes, usually the tacit assuimption is made that

software executing at remote sites cannot be protected from physical or program-
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based attack by the user at the node if the concept of nodal atltoimoily is to he

supported. 'Tihus the protection measures developed for such systems tend to be

limited in scope [33]. One report 1201 proposed using cryptographic methods to

protect data objects in distributed systems, allowing the objects to be transnitted to

nodes for examination while being able to detect modification of the objects upon

return to their "owner." However this is a very limited facility that does not address

the fill range of protection problems described and solved in this thesis.

A substantial body of literature deals with legal protection for proprietary

software (see [211), but not with the development of technological measures to

protect such software. A notable exception is a patent [I], issued in September 1979,

which proposes cryptographic mechanisms Ibr protecting proprietary software for

use with personal computers. The patent describes a microprocessor designed to

execute enciphered programs. This design is superficially similar to the encrypted

storage approach configuration illustrated in Figure 1-3 but it differs in a number of

ways. For example, the protection provided by this patented design applies only to

object code and read-only databases, not to modifiable databases. (The inventor

claims that the mechanisms could be used to protect such databases but significant

cryptographic weaknesses would become apparent in such applications.) This

restriction precludes a number of applications both for proprietary software and for

distributed systems software.

The same cryptographic limitations that preclude use of this design for

modifiable databases also restrcts the design to executing only one program per

microprocessor chip. This is in marked contrast to the system designs proposed in

this thesis each of which is capable of executing an csscntially unlimited number of

program products from vendors. In fact, the cryptographic techniques presented in

the patent are capable of concealing no more than one primar3 memory image

worth of code/data, so secondary and T&A storage mechanisms are inapplicable
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hcre:. \lofe inlpoltafll . this patented microprocessor design includes ()o facilities

Ibr dtecting modification of code or data. As noted earlier, the lack of such

measures permits some attacks that Could result in disclosure of the code or data, so

this design does not cven provide complete protection against disclosure. The lack

o1' modification detection mechanisms also severely limits the range of applications

which can be protected by this design, e.g., the design is incapable of providing

secure accounting or re ocation facilities or of s;upporting distributed systems

software as described above. Thus this patented design differs in many respects

from those presented in this thesis.

The areas which are most directly related to this thesis are cr.lptography and

communication security research. This thesis does not develop cr ptographic

algorithms but it does rely on an understanding of basic criptographic techniques

and of characteristics of modern ciphers, e.g., the Data Encryption Standard [231 and

the RSA public-key algorithm [26], in developing the encrypted bus and encrypted

storage approach of protection mechanisms. The problems of protecting

information transmitted on a bus in the computer systems of interest differ

somewhat from those encountered in protecting information in general purpose

cornmunication networks, but communication security research does offer some

help. For example, research in this area provides a taxonomy of threats that are

applicable to the thesis problem and offers techniques for dealing with these threats

in general purpose communication environments. Some of these techniques are

directly applicable to the problems encountered in this thsis and others can be

modified to meet the specialized requirements encountered in this context.

Some research has been carried out on the use of cryptography to protect files in

centralized systems. Commercially available software developed at IBM [12]

proides key management facilities and encryption/decryption primitives that can

be used with liles on secondary storage, but these mechanisms must be explicitly
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years. This chapter also examines the concept of tamper-resistant modules in

greater depth, noting some of the problems that may arise in engineering such

modules. [lhe simplest approach to protecting external software based on the use of

a TRM is described and evaluated. The chapter concludes x ith a brief discussion of

cryptography and a simple application example, secure netwAork-based distribution

of external software. Ilie protection nmechanisms developed in Chapters 3 and 4

employ cryptographic techniques, so this discussion is intended as background for

the reader who may be unfamiliar \ ith fundamental cr)ptographic techniques.

Chapter 3 develops designs for protecting external solmt\are based on an

encrnptcd bus approach. it contrasts security requirements l6.r this approach to

those usually associated with communication systems. [he chapter de elops

cr ptographic-based protection mechanisms to secure transactions on a physically

Unprotected bus connection TRM-packaged devices that form a computer system.

In developing these mechanisms, special attention is paid to minimizing the impact

of protection measures on the performance and overall cost of the computer system.

System initialization procedures, error response and recovery measures and

proccdures for adding new TRNIs to a system are presented. This chapter describes

ways of interfacing non-secure devices to these encrypted bus systems.

Chapter 4 develops system designs based on anl encrypted storage approach. The

security requirements in this approach differ somewhat from those in the encrypted

bus design. These differences are examined through the use cf an abstract model

that captures the essential features of this approach independent of the system

configtiration employed. Cryptographic-based protection mechanisms are

de, eloped to secure data held in physicall unprotected storage. '11)c protection

mechanisms employed here differ noticeably from those d\eloped in Chapter 3.

Again, special attention is paid to minimizing the impact of these protection

mechanisms on system performance and cost.

40

..... ..



Introduction

Chapter 5 explores the problems of developing computer systems that execute

software supplied by multiple vendors and of meeting user security requirements in

the context of systems executing external software. "lI'is chapter uses the systern

designs of chapters 3 and 4 to achieve these dual requirements. Tlese rCLuircments

can be met in two ways, either through the use of third-part) supplied iTRMs with

trusted operating systems or through the use of" separate TkRMs (one per \ cndor)

comhincd into a single computer system. Both of these approaches arc described

and e aluated in terms of cost, effectiveness and acceptance b users and vendors.

Chapter 6 summarizes the rcsullts of the thesis, examines the applicability and

limitations of the proposed mechanisms and suggests possible directions for further

research in this area.

1.6 How to Read This Thesis

Theses can be read at a number of levels, ranging from cursory perusal to critical,

in-depth analysis. Those who wish only an overview of the research described in

this thesis probably should read only this introductory chapter and the concluding

chapter. Such readers are already more than half-way through if they have not

cheated (by skipping material before this section). Brave souls who desire a detailed

understanding of all the protection mechanisms developed in the thesis will have to

wade through each chapter, section and subsection. However, individuals with

soMc understanding of cryptography may skim the discussion of this topic presented

in section 2.3. Special provisions have been made for readers seeking a thorough

understanding of this research but not wanting to examine all of the proposed

mechanisms in detail. At one or more points in Chapters 3, 4 and 5, instructions

have been incltded to direct the reader around detailed discussions of specific

protection mechanisms. One can gain a fairly good understanding of this research
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by following these directions, even if all of the detailed discussions are avoided. As

a further aid to the reader, a list of acronyms used in this thesis is provided as an

appendix (page 248).
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Chapter Two

The System Model, TRMs and Cryptography

This chapter begins by describing in greater detail the computer system model

introduced in section 1.3.1. Variations on the basic model are introduced and

projected characteristics of devices in these systems are extrapolated from current

device specifications. This model provides an engineering context for the design

and evaluation of the protection mechanisms explored in the thesis. Next, the

chapter explores the use of tamper-resistant modules (TRMs) to physically protect

security-relevant system conponents and thus protect external software, meeting the

requirements of vendors. A simple system design employing a single TRM can

meet vendor security requirements, but there are a number of limiltaltions associated

with this simple design. To overcome these limitations, more elaborate designs

combining 'TRMs and cryptographic techniques are developed in Chapters 3 and 4.

This chapter concludes by introducing the reader to some cryptographic concepts

and examining cryptographic techniques for use in the latter chapters.

2.1 The System Model Revisited

A simple model for the comptiter systems of interest was introduced in Section

1.3.1. 'This model, reproduced in Figure 2-1, and variations on it are described in

greater detail in this section. Ilie model provides a framework in which detailed

designs of protection mechanisms are developed and evaluated and it includes only

those details that affect these mechanisns. For example, most dclails of bus

arbitration are ignored as they are largely irrelevant to the proposed protection

mechanisms, whereas timing characteristics of devices in the system are presented
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since the\ are necessary in evaluating the performance impact of such mechanisms.

This model attempts to embody the high level architecture of personal and smal

business computers that will be constructed in the next 3-5 years. However,

differences between this model and conmiputers actually produced need not preclude

the adoption of the protection mechanisms developed it the thesis. In fact, the

protection mechanism designs that are most likely to prove feasible are largely

independent of details of processor and primary memory operation. 'hlus, although

the system model attenots to capture salient features of real computers, deviations

from this model do not affect all the protection mechanisms proposed in this thesis.

P EMS-MEM r&A other peripherals

Figure 2-1:T'he Basic Model for the Computer Systems of Interest

Before proceeding to a discussion of variations on this basic model, some

additional comments are in order. In Figure 2-1 and other system configuration

diagrams each storage system component is depicted as a single box. This is not

meant to imply that in every case there is but one of each of these devices nor that

multiple instances of a device are packaged together. In the basic system model

there is only one processor (CPU) but there may be multiple, independently

packaged instances of the storage devices. In particular, when storage devices

containing sensitive data are TRM-packaged, additional, non-TRM-packaged

44



'he System Model, TRMs and Cryptography

devices may be used to hold client data since vendors are not tri*Jng to p )1c t this

data from physical attack. This device replication is not required for ver ,ccurity

but may be preferred by clients since it gives them Full access to their dt,. ('(his

dual packaging strategy is not applicable to transfer storage since it is used

exclusively by vendors.) Thus, these configuration diagrams illLstrate iiniial

nimplementations.

In section 1.3.1 there was a brief discussion of how secondary storage (S-M FM)

differs from transfer and archival storage (T&A). It was noted that transfer and

archival storage is always demountable whereas secondary storage may be non-

demountable. Thus these two types of storage are not necessarily distinguishable

based on the devices used to implement them, i.e., a demountable disk might serve

as either transfer and archival or secondary storage. A second distinguishing feature

is that files on T&A storage are viewed as being outside of the file system maintained

on secondary storage. The assumption here is that program files are transferred into

primary memory for execution from the file system (via swapping or demand

paging). Portions of data files are read and written by transfers between primary

memory and secondary storage, e.g., disk sectors may be the object of such transfers.

Extnally supplied software distributed to a client on transfer storage media is

moved to a permanent home on secondary storage before use. A sensitive file on

secondary storage may be recorded on secure archival storage media and later can

be reloaded, i.e., copied to the file system under its original name.

There are three possible reloading constraints associated with files maintained on

secure secondary storage: unconstrained, non-reloadable and most recent onby. Some

files have no constraints on reloading, i.e., the client is free to reload any archived

copy of the file. An object code file produced by a proprietary compiler might fall

into this class since the vendor has no concern over which version of the file is

executed by the client. Other files are non-reloadable, ie., under no circumstances
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,hould these files he archied and later reloaded. Accounting files used by

proprietary sollwarc may tIll into this category since if the were reloaded the client

could "turn back tie clock" on the billing function they provide. Special

precautions must be taken to ensure the reliability of these files and these

precautions may significantly increase the space occupied by the file. Vendors also

may require some files to be arcl; ,'ed and reloaded together by the operating system

(to enforce some consistency constraints) and these can be grouped into archival

units on archival storage. The same concept can be applied to files that make up

external software packages, yielding transfer units on transfer storage. Ways in

which these groupings can be implemented securely are examined later.

In between these two extremes are Files that may be reloaded only froma the most

recent archived copy of the files. For example, a database may be periodically

checkpointed (archived) and a small transaction log may keep track of the updates

that take place between checkpoints. The database should be reloaded only from

the most recent archived copy and the small transaction log can be non-reloadable.

These reloading constraints apply not only to individual files but also to groups of

files that must be archived and reloaded together, to ensure consistency across file

boundaries. (Such consistency also may be achieved explicitly by including some

information in each file that binds it to the other files archived at the same time.)

Even if there are no constraints with respect to timeliness associated with reloading a

file (unconstrained), it may be required that other files archived at the same time

must be reloaded along with this file. Thus even unconstrained files may have some

constraints on reloading.

2.1.1 Variations on the Basic Model

The computer system pictured in Figure 2-1 employs a single, general purpose

bus to interconnect all of the system devices. Figure 2-2 illustrates a variation on
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this model, a dual-bus systen in which primary memory is attached via a dedicated

memor, bus whereas other devices are attached to an I/0 bus and the two busses are

connected via a bus coupler at the processor. (The bus coupler provides Functions

necessary to mate the two busses, e.g., buffering and inter-bus arbitration.) A dual

bus system offers several advantages over a single bus system. The memory bus,

since it is quite short and since it is specialized in finction, can be made faster than a

general purpose or I/O bus, thus reducing effective access time to primary memory.

The I/O bus is used to interconnect devices with less stringent performance

requirements and thus can be slower than a general purpose bus. In this way more

expensive, high speed bus interfaces are employed only on the memory bus (2

interfaces) and less expensive bus interfaces are used on the I/O bus where many

more interfaces are required. This configuration also reduces contention on both

busses, further improving performance.

I T&A other peripherals

Figure 2-2: A Dual Bus System Model

Dual bus systems provide improved performance at the cost of a bus coupler and

two high speed bus interfaces. This performance gain entails sonic cost and since

high performance is not a major design parameter for the systems of interest, one

expects to see both single and dual bus systems in practice. Another way to improve
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system perlormance is to add a cache nmmory to the processor. (System model

diagrams do not explicitly illustrate the presence of a cache at the processor.) The

major motivation foir using cache memory is that it reduces the effective access time

of primary memory. As processors in the systems of interest become faster,

inclusion of cache memory will probably become appropriate. Moreover, use of

cache memory allows somewhat slower, cheaper primary memory to be employed

with only a minimal effect on effective access time. This is an important feature as

processor costs will be small relative to primary memory costs in many of these

computer systems. Finally, use of cache memory reduces bus contention and may

eliminate the need for a very high speed bus, i.e., one capable of keeping tip with

processor-generated references to primary memory.

Again, the performance gain achieved here is not without cost. The addition of

cache memory to a processor is a non-trivial engineering task and the cost of the

resulting system is correspondingly increased. Thus one expects to encounter both

cache-equipped and cacheless systems in practice. A cache can be added to a

processor in either a single or dual bus system, yielding four basic system

configurations: single bus cacheless, single bus cache-equipped, dual bus cacheless

and dual bus cache-equipped. In general, system periormance improves with

successive configuration choices on this list, i.e., a single bus, cacheless system is the

slowest and a dual bus, cache-equipped system the fastest. In illustrating system

configurations, if the choice between singlc and dual bus designs or the inclusion or

omission of a cache is irrelevant to proposed security mechanisms, the generic

model of Figure 2-1 will be used. Otherwise, specific bus configurations will be

shown and the inclusion or omission of a cache will be noted in the text.
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2.1.2 Processor and Storage System Parameters

Most details of processor operation are irrelevant to the model but a tfw

parameters are critical to the formulation and evaluation of design options. One of

the most important parameters is the processor word size, i.e., the number of bits of

data normally fetched and transformed by the processor. A word size of 32 bits is

projected for the systems of interest. This is a larger word size than most personal

computers employ at this time, but already there are single chip processors with 32-

bit registers, e.g., the MC68000 [221, and full 32-bit microprocessors will probably be

announced before the end of 1980. The processor should be capable of directly

addressing about 16M-32M bytes of primary memory, to take advantage of the

continuing improvements in memory technology. Bus addresses should be a little

less than 32 bits, to support byte addressing of primary memory (24 to 25 bits) and

for control of peripheral devices. Ille size of these addresses and the word size

suggests that one set of bus lines should be used alternately for addresses and data,

to reduce the cost of bus interfaces. This is especially important for the general

purpose and i/O busses since a number of devices will be connected to these busses.

If the processor is equipped with a cache memory, several additional parameters

come into play: cache size, line width and update scheme. 3 A survey of existing 32-

bit, cache-equipped processors turns up cache sizes ranging from 8-32 Kbytes and

line width of 8-32 bytes. As noted earlier, the systems of interest are not intended

for extremely high throughput, so the projected cache size for these systems is 8

Kbytes. For most systems a line width of 8 or 16 bytes (2 or 4 words) will be

appropriate but a 32-byte line width will be required in support of some encrypted

storage protection mechanisms. Since the systems of interest generally support only

a single user, the hit rate for a cache of this size may be in the range of 95-98% [61.

3A cache line is the group of words treated as a unit for addressing and replacement purposes.
Within the cache, there are a number of cache line frames, each capable of holding one line.

49

-. /



I'hc System Model, TRMs and Cr) plography

Cache ifeniOl\ control logic will employ one of two schemes for Updating the

contents of primarm)1emory: wrie-ilhrough or write-back. In a writc-through cache,

a write to a word in the cache is propagated to primarN memor immediately, so that

primary memory and the cache remain "in sync." (In fact, the update of primary

inlnlorN normally is buffered by the cache so that the processor does not have to

, ait lo- the primary memory access to complete, so there is a short time windqv

k hen the two are not in sync.) If the target of a write is not in the cache, then the

update takes place only in primary memory, i.e., the cache is not affected. i a

write-back cache, wriies are effected only in the cache, i.e., an attempt to modify a

word not in the cache results in a fetch of the appropriate cache line fiom primary

memory. Updates are propagated to primary memory only when modified cache

lines are evicted as part of the cache replacement strategy. (Note that an entire

modilied cache line is copied into primary memory; there is no attempt to keep

track of which words in the line were modified,) In a write-back cache anywhere

from 20-60% of the misses result in eviction of modified lines, i.e., the evicted line is

written into primary memory. Unless otherwise stated, caches in this thesis are

assumed to be write-through.

To estimate the performance characteristics of the processor and various levels of

storage, one must adopt some rules of thumb. Recent trends in semi-conductor

technology provide several such rules for projecting the performance and cost of the

systems of interest [2]. These projections are useful in that they provide a basis for

evaluating proposed designs in terms of technological (and economic) feasibility.

For example, one rule of thumb notes that the component count per IC chip

approximately doubles every year and memory chip capacity quadruples every two

to three years. At the same time, raw speed of IC chips doubles every five years. As

production techniques are refined the cost of producing chips with constant

performance characteristics drops by about 20% per year. Using these rules of

thumb, one can extrapolate from current product specifications to project some of

the characteristics of systems that will come into existence over the next 3-5 years.
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Ikased on these trends, the minimnum instruction execution time Ibr processois in

tile systems of interest should range from about lOOns (10 MIPS maximum) Ibr a

high performance multi-chip CPU (the "top of the line" in this class of s\ stlcis) to

about 600ns (1.6 MIPS maximum) for a slow, single chip processor (a "lo\\ end"

enlry in this class). It is assumed that the Fastest instructions are register-to-register

operations, no memory references are involved, so this time is also taken as the

llliinulllnl time between processor-generated lenory relirenccs. '(le llcan time

between processor-generated nemlory references is aSSUmied to be about ,I factor of

3 or 4 greater than this minimum, accoInting for longer instruction execution limes i

and references for instruction operands. This yields processors with average speeds

ranging from 0.4 to 3.3 MIPS (assuming matched primary memory access times as

described below). For the storage components of the system, there are a number of

relevant device characteristics: access time and transfer rate, mean time between

references, storage capacity of tile device, size of data aggregates transferred to and

from the device and tile mean time between failure (MTBF) of tie device. In

general, going from the lowest level in the storage hierarchy (cache memory) to the

highest (T&A storage) the access time, mean time between references, capacity and

data aggregate size all increase whereas de MTBF and transfer rate decrease.

The volatility and demountability of storage devices are also relevant to the

system model. Cache and primary memory are constructed from solid state

components and are volatile whereas secondary memory and T&A storage are non-

volatile. Only T&A storage is required to be denountable but secondary storage

may also be demountable, depending on the technolog. employed. 'Note that even

though magnetic bubble ienories may see increased application in this time frame,

such memories are not expected to be price comlpetitive with rCmovablC magnetic

media for many applications and thus will not signilicantly displace such media. In

fact, the recent improvements in non-demountable disks, e.g., I'inchesier

technology disk drives, make it likely that magnetic bubble memories will not
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significantly displace disks for some time. Thus the predominant form of secondary

storage employed in these systems is likely to be magnetic disks. Also, not all system

configurations will provide separate devices for secondary and T&A storage, thus

demountable media may serve a dual role in some systems.

Now consider projected values of some these parameters for devices at various

lev'els in the storage hierarchy. In high performance systems employing a cache, the

effective access time will be about the same as the minimum instruction execution

time. (Tile memory chips used in caches are static RAMs so tile cycle time and

access time are the same.) This access time includes checking to see if tile requested

word is in the cache and the transport delay between the cache and processor. Thus

a processor with some instruction Iookahead facilities can maintain a continuous

stream of references to the cache for minimum time instructions. This suggests an

effective cache access/cycle time of about loons, which yields a transfer rate of 320

Mbits/s. Access time for primary memory (using 64-256 Kbit chips) should range

from about lOOns to 200ns, exclusive of bus transport time, with cycle time about

twice access time. Bus time will add some 200ns to 300ns to this access time (for

transport), yielding an effective primary memory access time of about 00-600ns, so

the naximluli primary memory transfer rate ranges from about 106-213 Mbits/s.

(This transfer rate assumes a non-interleaved memory; cache-equipped systems will

require at least two-way interleaving for quick transfer of cache lines, increasing the

transfer rate.)

In a cache-equipped system, the effective memory access time seen by the

processor is determined by the access times of the cache and primary memory, by

bus transport time and by the hit rate. A cache-equipped system using fast (lOOns

access time) primary memory and a fast (lOOns transport time) bus can achieve an

effective average access time of 104-1 1Ons, based on a 95-98% hit rate. For a cache-

equipped system using slower primary memory (200ns access time) and a slower bus
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(20(iis transport tine), the effective a.erage access time is 110-125ns. basc'd ,ln ihis

hit rate range. 4 l'his ihIIstlIalCs the enormous improvements that can be (hitilied by

Inclusion of a cache lleiory. Fx en if performance is not a critical concern,

econolics may dictate use of a cache since it allows LIS of .slower, cheaper me1cmory

chips for primary memory. At this tine, the location of the "break een" point,

based on the cost of equipping a processor with a cache versLS the cost of liCmDOry

chips and the anticipated size of primary lenory, is not obvious.

For secondary storage the access times and transfer rates uary considerably

depending oit the technology employed. For example, nagnetic bubble memories

may provide average access times of 10-15ms and transfer rates of 0.1-1.5 Mbits/s

whereas fixed disks may exhibit average access times of about 70Mis and transfer

rates of 10-15 Mbits/s. Bubble memories, using 4-16 Mbit chips, may be configured

as small capacity storage devices (4-16 Mbytes) whereas hard disks may contain up

to 100 Mbytes. Devices used for T&A storage tend to be relatively slow, at the low

end of the range for secondary storage devices. For example, floppy disks may

exhibit access times on the order of 100-400nis and transfer rates of 0.5-1.0 Mbits/s.

Capacity for floppies may grow to 5-10 Mbytes using double sided, double density

recording technology. For all of these secondary and T&A storage devices the

(usable) record size is expected to be about 512 bytes. These characteristics of the

computer systems of interest are collecied in Table 2-1.

4"l'his cffective average access time calculation assumes that on a cache miss the first word fetched
is the one which caused the miss and that subsequcent references to words in the fetched line occur at
cache speed. This second assumption may not hold for long cache lines (>4 words) or if a slow bus
and slow primary memory are used.
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System Characteristics

-Processor and Bus

*word length: 32 bits

* minmum inStRuction time: l00-600ns (1.6-10 MIPS)

*average instruction time: 300-1 800ns (.4-3.3 M IPS)

*bu~s cycle time: 100-200ns

*mulhltiplexed data/addrecss buIs lines: 32

-Cache (optional)

*access/cycle time: lO0ns

line width: 8, 16 or 32 bytes

*capacity: 8 or 16 Kbytes

-Primary Memory

*access time: 100-200ns

*cycle time: 200-400ns

*capacity: 64K-16M words

-Secondary and T&A Storage

*access time: 10-400ms

*transfer rate: .1-10 Nlbitsfs

*capacity: 5-300 Mbytes

*record size: 512 bytes

Table 2- 1: Characteristics of the Compu~ter Systems of Interest
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2.1.3 Other Peripherals

In Figure 2-1 peripherals other than storage devices are lumped together at the

end of the bus under the heading "other peripherals." This heading includes

terminals, bulk I/O devices and communication facilities, e.g., network interfaces.

These devices are not described in detail since their operation is not critical to the

security of external software. For example, external software that interacts with a

user via a terminal must be prepared to accept any input fiom the user and thus no

tampering with the terminal should affect the secure operation of the software. The

same argument holds for hardcopy output devices and even for network interfaces.

(If external software requires secure communication facilities, these facilities will be

provided within the TRM containing the processor.) In designing mechanisms to

protect external software, provisions must be made to accommodate I/O devices,

i.e., these devices must still function properly in conjunction with protection

mechanisms.

Only two I/O devices exhibit high enouLgh transfer rates to warrant further

discussion: network interfaces and bit-map displays. For most personal and small

business computers the network interface will be telephone based and thus is

restricted to relatively low bandwidth, e.g., less that 10 Kbits/s. However, in

distributed systems, high speed local area networks will probably be employed and

the bandwidth could be in the neighborhood of 10-20 Mbits/s. This transfer rate is

equal or greater than that of many secondary storage devices and thus constitutes a

significant contribution to bus utilization. Many systems may be equipped with bit-

map displays in the future. These displays associate with every pixel on the screen

one bit in a display memory, typically on the order of 128 Kbytes. (Color bit-map

displays associate several bits with each pixel.) The data transfers required to

manipulate the display may be limited primarily by memory access time, so these

displays are capable of very high transfer rates and they can become dominant users

of a general purpose or I/O bus.
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2.1.4 Basic Bus Characteristics

lie busses (general purpose, I/0 and memory) employed in the model are

abstracted fiom conentional designs such as the DEC UNIBUS and the IEEE S-

100 bus. Only those characteristics of bus operation that directly affect the design of

protection mechanisms are included in the model. The bus consists of a collection

of bidirectional lines for transmitting addresses, data and control information, as

detailed in Table 2-2. (Additional lines are provided for tining, arbitration, power,

etc. but are not included the model.) 'he general purpose and I/O bus are

asynchronous or pseudo-synchronous whereas the memory bus is assumed to be

synchronous. A bus cycle is the time interval required to perform a bus operalion.

Tlhere are four bus operations: lPIIESENT-Al)DR SS, PIMSENT-DATA,

A('KNOWLEI)GE and ERROR. The first is used to place an address on the bus,

the second does the same for data (or an interrupt vector) and the third

acknowledges receipt of data. The last operation, ERROR, is described below.

Bus c)cles are well defined for synchronous and pseudo-synchronots busses; for

asynchronous busses the minimum time required for a bus operation as described

above will be referred to as the bus cycle time. For the systems of interest the bus

cycle time will range from about lOOns tbr a memory bus to about 200ns for general

purpose or I/O busses. An arbitration mechanism, which may proceed in parallel

with data transfers, is used to select the next device to use the bus, i.e., the bus

masler. (Although arbitration is an important aspect of bus design, all of the

commonly used bus arbitration schemes are essentially equivalent from the

standpoint of security and thus no specific arbitration scheme is included in the

model.) Once granted the bus, the bus master uses two or more operations to

complete a bus iransaction, e.g., a data transfer, with another device, the slave. (In

asynchronous and pseudo-synchronous busses a handshaking protocol usually is

employed to allow both slave and master to control the duration of the transaction.)
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BUS LINE DESCRIP'ION

A/DO-31 used to transmit addresses and data

PARITYO-3 used to parity check lines A/D0-31

ADDR asserted when an address is on lines A/DO-31

DATA asserted when data is on lines A/D0-31

INT asserted when interrupt vector is on lines A/D0-31

READ asserted during read transactions

WRITE asserted during write transactions

EXT asserted during exiended transactions

ACK asserted by a slave to acknowledge a write or interrupt

ERROR asserted by a slave to indicate a bus operation error

RESET asserted to reset the device selected by lines A/D0-31

Table 2-2: Bus I.ines for the System Models

The ERROR operation noted earlier is issued by a slave if a transaction cannot be

successfully completed, even though the master uses a timcout to detect the failure

of a slave to respond.
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Associated with each device on the bus are one or more addressable cells from or

to which data is read or written (or both). A device examines addresses placed on

the bus to determine if one of its cells is the target of an operation. In the case of

primary nieniory these addresses cor',spond to storage cells whereas for other

devices the), represent control and status registers. The processor writes into a

control register to initiate an operation and reads fRom a status register to determine

the outcome of the operation. For example, the processor initiates a direct memory

access (DMA) transfer of data from a disk to primary memory by writing the (disk)

source address, the (primary memory) target address and the number of words to

transfer into appropriate disk control registers. The disk then transfers data to

primary memory, one word at a time, indicating completion of the transfer by

setting an appropriate value in its status register and by generating an interrupt.

Devices that transfer very small quantities of data, e.g., character-at-a-time 1/0

devices, often use device registers to hold the data rather than employing the DMA

technique described above. In such cases the device generates an interrupt and the

processor transfers data between primary memory and the device register.

In systems employing a dedicated memory bus, this bus is assumed to be quite

similar to the general purpose and I/O busses described above. There will be no

arbitration mechanism because there is only one bus master, the bus coupler

(processor), and there is no need for interrupts. The memory bus will be

synchronous with transfers taking a known period of time, since the memory

provides a uniform access time. Thus a memory bus is somewhat simplier than a

general purpose I/O bus. The functions provided by a bus coupler used to interface

these two busses will vary depending on the system design. For example, the

coupler may provide some buffering for speed matching, to account for differences

in the number of bus cycles required for operations on the two busses and to

manage arbitration across the two busses. On a store into primary memory by a

device on the I/O bus, the bus coupler can generate an ACKNOWLEDGE
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immediately and carry out the transaction on the memory bus asynchronously. On

primary memory fetches initiated by devices on thu I/0 bus, the bus coupler can

prefetch data in anticipation of subsequent requests from these devices. In this

fashion the I/0 and memory busses can operate largely independently and most

transactions on the general purpose bus will not suffer long delays in accessing

primary memory.

2.1.5 Graphic Conventions for Bus Transactions

Vwo graphic techniques are employed in this thesis to describe bus transactions,

especially the secure folrms of these transactions developed in later chapters. The

first, an event graph, shows the flow of data among the processing steps in the

transaction and provides symbolic timing information. Event graphs indicate points

in a transaction where there is potential for parallelism without making any

assumptions about the perifrmance or configuration of devices. The second, a

Oiing diagram, shows the utilization of various devices' during a transaction,

illustrating the parallelism achieved by using a specified number of devices tinder

stated timing assumptions. Timing diagrams are useful for determining the

transaction time and cycle time of transactions for various equipment

configurations.

In event graphs, processing steps are represented as labelled circles. 1lle labels

consist of a symbol to indicate the type of step and a number to distinguish among

multiple instances of the same step type. Narrative descriptions of transactions refer

to the steps using these labels. Trable 2-3 lists the symbols used to label processing

steps. (Some of these symbols refer to operations that are described later in the

thesis; they can be ignored for the moment.) The now of data (and time) is from

left to right and is indicated by arcs joining process-step circles. 'he inputs and

outputs of a transaction, as seen by the bus master, are indicated by bold dots and
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SYMBOL PRO(ESSING STI' DSCRIITION

C encryption/decryption of a 64-bit data block

T transmission of <32 bits on the bus

A access to read or write a memory cell

E calculation of a 64-bit cryptographic error detection code

P processor interrupt handling

X XOR (modulo 2 sum) of two <32-bit quantities

= comparison of two <32-bit bit strings

Table 2-3: Symbols Used in Event Graphs and Timing Diagrams

are accompanied by explanatory labels. The steps that comprise a bus transaction

occur at three sites in the system, the current bus master, the bus and the addressed

slave. To illustrate the parallelism inherent in this distributed environment, process

steps are grouped along three horizontal axes corresponding to the master, bus and

slave.

In timing diagrams each independent device instance, e.g., a cryptographic device

or bus lines, is represented by a separate, labelled, fine horizontal line. These

devices are grouped (vertically) corresponding to the event graph, i.e., bus master

devices are at the top, followed by the bus and by slave devices. Time is divided
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into bus-cycle duration quanta, indicated by line vertical lines, and these lincs arC

numbered at the bottom of the diagram. The actual duration of a bus cycle is not

indicated since only relative times are needed to perfbrm the required calculations.

Cycles during which a device is busy are indicated by a bold horizontal line, labelled

as in the corresponding event graph. Some events, e.g., bit string comparisons or

modulo 2 addition, are not noted since they are quite fast and this are effectively

absorbed by adjacent event times. Figure 2-3 illustrates the conventions used in

e ent graphs and timing diagrams as it describes two simple bus transactions.

Mi inimnum transaction time (assuming naximnal parallelism) is determined by the

longest path in an event graph, i.e., the slml of the process-step times along that

path. This time is represented as an expression in which lower case versions of

process-step labels are used to subscript a time symbol (7). Thlius the time to

transmit 32 bits on the bus is T and the time for an encryption/decryption

operation is T . Again, only major operations (those which appear in timing

diagrams) are included in timing expressions. Some slight confusion arises in

dealing with memory accesses in event graphs, timing diagrams and liing

expressions. In timing diagrams the symbol A represents the activity of accessing

memory and its duration Is the cycle ltne of the memory access, but in tining

expressions T represents the access time of memory. In reading a memory cell, the
a

value is available in time 7' after the address is received even though memory is
a

busy (unavailable) for the full cycle time. On writing a memory cell, the cycle time

may begin when the address arrives, even though the data may not yet be available.

"lhe event graphs use the symbol A for both read and write accesses.

2.1.6 Standard Bus Transactions

Figures 2-3 and 2-4 provide the event graphs and timing diagrams for the three

standard transactions: read, write and interrupt. (These transactions are referred to
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as siatdard to differentiate then 0ro the secure transactions developed later in the

thesis.) le event graphs and timing diagrams for these transactions are fairy

simple but they illustrate the basic features of both methods of graphically

portraying transactions. In the timing diagrams in these figures the assulption is

made that mernor) access timle is equal 1o bus c)cle time, i.e., fast memor) is paired

with a fast bus and slow memory %ith a slow bus. Although other combinations are

possible, this con'ention is adopted throughout this thesis, sinplitking liming

calculations. However, using the event graphs and narratie descriptions pro ided

throughout the thesis, the interested reader can construct timing diagrans for

transactions under other (less convenient) relati e performnancc ( haractcristics.

A standard read begins when the bus master assC Is the addrCs 01' the local ion to

be read using a PRESENT-AI)I)IlESS (TI). 11C slatlC .itssCS ite indicated

location (A) and responds with the requested data using a I1RI.NiNT-I)AI'A (1"2).

A write begins when the bus master asserts the address of the location to be

modified, using a PRESENI-AI))RESS (TI), then the data is transmitted using a

IllESENT-DATA ('12) and the slave responds immediately with an

AC(NOWLEIDGE (3). An interrupt is signalled by transmitting the interrupt

vector using a IRESENT-I)AA (T) and the processor responds with an

A(KNOWLE)GE (T2). Processing of the interrupt (P) begins as soons as the

vector arrives. The transaction time For a read is 2T + 7' , for a write it is 3T and
I a I

for an interrupt it is 27'. The derivation of these timing expressions from the event

graphs is straightforward and is verified by the corresponding timing diagrams.

Under the relative timing assumptions noted above, read and write transactions both

require 3 bus cycles and an interrupt requires 2 cycles. Since only one data word is

transmitted every three bus cycles, the effective transfer rate of the bus is one third

of its maximum potential. For busses with cycle times over the range of 100-200ns.

the maximum attainable transfer rate is about 53-106 Mbits/s for these transactions.
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Standard Read A D

D A

D T

R A

address data

Master Master

Bus TII T2 Bus

Slave A Slave

0123

Standard Write A D
D A A

D T C

R A K

address data ack

Master Master

Bus T T2 T Bus I T21T31

SlaveSlv
0123

Figure 2-3: Event Graphs and Timing Diagrams for Standard read and
write Transactions

For cache-equipped systems there are one or two additional transactions. Both

write-through and write-back caches require extended read transactions but only

write-back caches require extended write transactions. "nhese transactions transfer

an entire cache line (2, 4 or 8 words) between primary memory and the cache in one
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Standard Interrupt
N A

T C

interrupt V K

vector ack

Master Master

Bus TI T2 Bus

Slave Slave

0123

Figure 2-4: Event Graph and Timing Diagram for a Standard inlerruplTransaction

transaction. Figure 2-5 provides the event graphs and timing diagrams lbr both

transactions using two-word cache lines and two-way memory interleaving. An

extended read begins by asserting the address of the word which caused the cache

miss, using a PRESENT-ADDRESS (T1). This word is fetched first fiom primary

memory (Al) and transmitted using a I'llESENT-DATA (T2). The remaining

words in the containing cache line are fetched (A2) and transmitted (T3) without

issuing further PRESENT-AID)RESS operations. An extended write begins with a

PRESENT-ADDRESS (TI) followed by PRESENT-DATA (T3,T4) operations

confirmed by an ACKNOWLEDGE ([-5). Two-word cache lines yield transaction

times of 2T + 2T for an extended read and 4T for an exteded write. Under the
I a I

relative timing assumptions noted above, both transactions require 4 bus cycles to

transfer two words, a bus transfer rate of 80-160 Mbits/s.

The higher bus transfer rate achieved in extended transactions comes about by

eliminating explicit PRFSENT-ADI)RESS operations associated with subsequent

words in the cache line. As the cache line width grows this yields even greater

transfer rates. For example, a 4-word cache line can be transferred using 7 bus
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Figure 2-5: Event Graphs and Timing Diagrams for
Extended Standard Trransactions
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c)cles, a bus transler rate of 91-183 Mbits/s. This approach to implementing

extended transactions requires incrcased sophistication on the part of the memory

controller. to generate the appropriate addresses to fetch or store each word it) the

cache line after the first. It is also necessary to interleave memory so that

subsequent accesses can proceed without waiting for a memory access cycle to

complete. Since cycle time is assumed to be about twice access time, two-way

interleaving of memory is adequate for all cache line widths under this scheme. An

alternative approach to implementing cache/memory transfers uses memory

interleaving and additional bus lines to fetch or store multi-word units. However,

the scheme adopted here should provide adequate bandwidth for the processors in

the systems of interest without incurring the expense of extra bus lines.

2.1.7 Bus Utilization

Armed with the performance characteristics of various devices on the bus, one

can make some rough estimates of bus utilization in the systems of interest. Precise

bus utilization figures are application and equipment dependent, but even rough

estimates are useful in evaluating the performance impact of the protection

mechanisms proposed in subsequent chapters. (These mechanisms often increase

bus utilization by "protected" devices.) In general, bus utilization in single bus,

cacheless systems will be very high but can be moderated by the addition of a cache.

In dual bus systems, I/O bus utilization is likely to be low but the memory bus will

be very busy unless a cache is employed. In support of these statements consider

the following estimates. A secondary storage device may demand tip to 10-30% of

the bus cycles during a transfer operation, depending on the bus speed and device

transfer rate. T&A storage devices contribute somewhat less to bus demand and are

used less frequently, but they can generate transient loads of 5-10%. The bus

utilization of a network interface depends on network bandwidth but 10-35%
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transient utilization is possible. Manipulation of images on a bit-map display can

absorb essentially all of the bus cycles for short periods. Other I/0 devices place

only minor demands on the bus, e.g., <10% aggregate.

Bus utilization by the processor varies greatly between cache-equipped and

cacheless systems. In a cacheless system, the assumption is made that the bus cycle

time and primary memory access time are chosen to yield an effective memory

access time equal to the minimum instruction execution time, producing a well

balanced system. For example, a lOOns cycle time bus paired with a 100ns access

time memory yields a system capable of supporting a processor with a minimum

instruction time of 300ns (3.3 MIPS maximum). If the average time between

processor-generated memory references is about 3-4 times the minimum instruction

time, the processor will require about 25-33% of the bus cycles on the average with

peak utilization near 100%. Using a cache with a lOOns access time, the same

processor requires an average of 5%-15% of the cycles using a fast bus and memory

and 10%-30% for a slow bus and memory. Of course cache misses generate transient

bus utilization of 100%.

2 2 Tamper-Resistant Modules

As noted in Chapter 1, the vendors of external software have two major security

requirements: preventing disclosure or redistribution and detecting modification of

external software. Using the system model described in section 2.1, a number of

specific attacks that violate these requirements are readily identified. The

assumption is that the system components identified in I igure 2-1 are unprotected

and that an attacker can examine or modify data in these unprotected components

using appropriate equipment. For example, demountable media used for secondary

or T&A storage can be removed from the system and the data contained therein can
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he read or modified. A more sophisticated attacker might attach probes to the bus

to passively or acti'cl kkirctap bus transactiolS, e.g., to record transmitted data or to

generate spurious transactions that modil data in the system.

2.2.1 TRM Characteristics

l'hese simple cx amples illustrate the need to provide some foram of protection

a.gainst physical tampering for those portions of the system which arc critical to the

secure operation of e.xternal software. At a minimum, the processor will be

contained in a tamper-resistant module (TRM) since the software and databases

otherwise cannot be protected during execution. A TRM has the characteristic that

it prevents release or modification of the data contained therein as long as the

module is intact. If1a TRM is (physically) breached it is assumed that any sensitive

information inside the module is destroyed (erased). If external software (including

any databases critical to secure operation) is stored, executed and transferred wholly

within a TRM, the security requirements of vendors can be ["et since disclosure and

undetected modification of the software can be prevented.

The difficulty associated with engineering a TRM that performs as noted above

depends on several factors. The guiding principle is that the cost of subverting the

TRM should be greater than the expected gain resulting from the subversion. Thus

TRM design is influencd by the value of the software being protected. "lhe cost of

subverting a TRM includes not only the price of acquiring the module and the

effort involved in breaching it, but also any penalties resulting from detection of

tampering. For example, if a client were to rent a TRM from a vendor and the

vendor were to inspect the module and discover evidence of tampering, the vendor

might refuse to ftirnish any other software to the client and might institute legal

action against the client. Tlhus 'he cost of subverting a TRM must reflect the

likelihood of detection and consequent institution of punitive measures by a vendor.
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This suggests that engineering a TRM may be much easier if the TRM is not owned

by the client/attacker but rather is rented from a vendor who retains the right to

inspect the module and who can institute appropriate (legal) measures if e idence of

tampering is discovered.

Although the details of engineering TRMs are beyond the scope of this thesis,

one can make some general observations about characteristics of TRM packaging.

First, it should be noted that sorne commercial cryptographic devices available

today incorporate fundamental TRM design criteria. For example, these devices

may be housed in seamless metal cases with access controlled by a pair of high

security locks. These devices are designed to erase the cryptographic keys contained

wkithin whenever the device is opened, to prevent the leakage of information via

electromagnetic radiation, to withstand external electromagnetic interference, etc.

Although these devices are not designed to withstand a prolonged attack by a

sophisticated tamperer, they do suggest that TRMs can be engineered for the level

of security appropriate for coin mercial applications.

One of the most important characteristics of a TRM is its ability to destroy

sensitive data contained within should it detect any evidence of tampering. This

destruction of data must be carried out quickly to prevent a would-be tamperer

from accessing the information after breaching the TRM. Rapid erasure of a large

quantity of non-volatile memory, e.g., in secondary or T&A storage devices, may

prove difficult or impossible depending on the storage technology employed. Thus

magnetic bubble memories might provide an attractive form of secondary storage

for TRM packaging while media such as disks may be less well suited to this

application.

Another aspect of "RMs that must be noted is their impact on flexibility of

system configuration. In configuring a computer system composed of one or more

TRMs, the user will probably be restricted in the selection of components. In part
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this restriction arises because not all de~ices or combinations of devices are

amenable to TRM packaging. Moreover, all devices in a TRM (or a collection of

co-operating IRMs) must be packaged by the vendor of the system since all of these

devices must perform correctly to maintain the security of the external software.

This requirement may result in some combinations of devices being unavailable as a

"FRM-packaged system. 'Thc ability to expand a system may be hampered by lack of

space within a TRM to incorporate more components. Maintenance of TRM-

packaged devices is hampered since only the TRM vendor is in a position to provide

service while maintaining system integrity.

An important consequence of TRM packaging is the cost incurred. Packaging

one or more devices as a TRM is more expensive than standard (non-secure)

packaging. Although the differential in cost between standard and TRM packaging

varies based on the perceived threat environment, experience in packaging

commercial cryptographic devices indicates that this cost can be quite substantial.

For example, the difference in price between one conventionally packaged (rack

mount) link encryption device and the same device packaged for use in unsecure

areas (desk top box) is approximately $900, roughly 45% of the total price of the

latter unit. It appears that the majority of this cost arises not from additional

electronic components but from mechanical engineering considerations. Over and

above some base, the cost of building a TRM probably increases with the size of the

TRM, for a fixed level of security. Thus very large TRMs may be impractical

because the cost of packaging would be great and very small TRMs may be

infeasible because the cost of packaging would be significantly greater than the cost

of the protected components. Only over some middle range is TRM packaging

likely to be practical.

It may be cheaper to build a TRM that is permanently sealed, as opposed to one

that includes provisions for controlled access, and the resulting device may be more
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secure. The assumption here is that provisions for controlled cntry into the module

introduce weak points that must be buttressed by sophisticated and costly security

mechanisms. It may also be easier to detect tampering in permanently sealed

modules. TRMs sealed at the time of manufacture would include no provision for

controlled access for maintenance, thus eliminating the need for trusted field service

personnel. If a component within a scaled TRM Fails, the entire TRM would be

replaced and the failed TRM would require "factory" servicing and re-packaging

(the contents would be erased during servicing). This approach to TRM packaging

would probably work well with devices that arc highly reliable, e.g., solid state

devices, but not with electromechanical devices that require periodic servicing.

Sealing a TRM eliminates the option for field upgrades or expansion. Finally, the

number of components that can be packaged in a sealed TRM is limited by the fact

that the filure of any component may require replacement of the entire TRM.

2.2.2 A Monolithic TRM Approach

As a first approximation to protecting external software, one could imagine

enclosing all of the devices that are critical to the secure operation of the external

software in a monolithic TRM, as illustrated in Figure 2-6. (The specific system

configuration used within the TRM is not important here since all of the security

relevant components are entirely within the TRM.) The security requirements of a

vendor can be met by this sort of system since the processor, all storage required by

external software and the bus connecting these devices are all contained within the

TRM. Note that not all of the system components are enclosed in the TRM.

Terminals and other peripheral devices that do not effect the secure operation of

external software can be attached to the bus outside of the TRM. Fven storage

devices for data not essential to the secure operation of external software could be

attached to this bus extension, e.g., secondary storage exclusively for client data
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could be provided outside the TRM. In order to attach other devices to the bus

without violating the security provided by the TRM, the bus extension requires a

special secure bus coupler (S BC).

P 1-MEM S-MEM T&A] other peripherals

Figure 2-6: Using a Single TRM to Protect a System

The SBC acts as a filter to prevent unauthorized disclosure or modification of

data within the TRM. To this end, the SBC ensures that bus traffic among devices

within the TRM is not repeated onto the bus extension (to prevent disclosure) and it

controls access to primary memory by DMA devices outside the TRM (to prevent

disclosure and modification). These tasks are made easier by partitioning the bus

address space so that a single address line indicates whether an addressed device is

inside or outside the TRM. It then becomes trivial for the SBC to avoid repeating

intra-TRM bus traffic onto the bus extension by inspection of this address line. To

control access by DMA devices to primary memory, the processor must inform the

SBC of the locations that should be accessible to DMA devices outside the TRM,

along with the mode of access allowed, i.e., read or write. The SBC can be equipped

with a small number of registers to establish the bounds and access modes for these
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locations. liese registers are managed by the processor as part of controlling
"unsecure" DMA devices5 and are scanned on transactions initiated oLItside the

TRIM.

This approach to securing external software has several advantages. Little in the

Nay of special hardware is required, only the SBC is unique to the design, the

remaining devices can be "off the shelf." The SBC appears relatively easy to

construct and should be capable of operation at bus speeds, given the existence of

analogous devices such the the UNIUS adaptor employed on the VAX 11/780

[10]. The only impact on software is the requirement to co-ordinate management of

the SBC with control of DMA devices on the bus extension, a finction easily

assumed by the operating system as part of device management. The design also

provides some flexibility in system configuration. For example, secondary storage

for client files might be provided on devices attached to the bus extension whereas

secondary storage for external software is provided by devices within the TRM.

Despite the advantages noted above, this design also has a number of drawbacks.

Perhaps the most obvious problem with this design is that it does not provide for

demountable secure storage. 'Ihus no secure T&A storage can be provided, as noted

by its absence from the TRM in Figure 2-6, and secondary storage contained in the

TRM cannot employ demountable media. The lack of secure transfer storage could

be a major problem if the only alternative were the use of erasable IPROM

(EPROM) or factory-recorded secondary storage within the TRM. Note that ROM

is not acceptable for recording external software because of the need to be able to

erase the sensitive information contained in the TRM in case of tampering.

5For die SBC to he completely transparent, it would have to be aware of the addresses and
semantics of the control registers for all of the devices on tie hIs extension. This would significantly
complica(c the SIiC and would limit the choices Ihr devices on [he bus extension io those with which
the SBC was familiar. For these reasons a transparent SBC design was rejected.
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Similarly, only readily erased devices such as bubble memories are suitable for

inclusion as pre-recorded secondary storage. Factory recording of external software

is not very appealing as it does not support distribution of new releases, either for

bug Fixes or new products.

However, secure distribution of external subsystems can be provided using

communication facilities and employing cryptographic techniques as described in

the next section. Using such techniques, the vendor can securely transmit copies of

or updates to external software to appropriately equipped, TRM-packaged

computer systems. Thus the lack of secure transfer storage can be overcome, at the

cost of requiring some communication facilities and cryptographic capabilities

within the TRM. Whether the inability to provide demountable secure storage for

non-transfer purposes is a serious deficiency depends on the applications involved.

For example, an external subsystem that managed client databases using data

structures and access techniques that were viewed as proprietary might require

secure demountable media for secondary or archival storage. The inability to

provide secure demountable media for secondary or archival storage is a serious

limitation in some applications.

Another difficulty with this design is that it may encounter the erasure problem

alluded to earlier, because of the presence of secondary storage within the TRM.

Again, the seriousness of this problem will depend on the volume of non-volatile

memory contained in the TRM and the technology used to implement it. Although

this design exhibits some flexibility in allowing a user to configure a system with

non-security relevant devices outside the TRM, in other ways the design allows little

flexibility. As noted earlier, the users may be quite limited in their choice of

configurations for devices within a TRM, and in this design most of the system is

within the TRM. Since secure secondary storage is available only within the TRM,

some types of storage devices may be precluded because of size constraints or
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because of the need for periodic adjustment. The number of devices contained fi

the TRM probably rules out use of the sealed TRM packaging technique described

earlier and for some systems the size of the TRM required would pose a significant

expense.

The impact of these characteristics on system design are illustrated in the
following examples. One sort of system that might be amenable to the monohlhic

TRM design is a very simple personal computer designed exclusively for running a

language system such as BASIC or APL. The TRM could contain the language

system in EPROM or bubble memory and an amount of primary emorry suitable

for simple applications could be provided. Secondary memory \ithin the TRM

might not be required, making a small, sealed TRM a real possibility. User

programs and data could be kept in a secondary storage device attached to the bus

extension, along with a terminal and other input/output devices. If the only

external software to be protected were the language facilities, and if these facilities

did not require distribution of new releases to fix bugs or to add enhancements, this

design might prove adequate. To accommodate a more flexible update strategy, a

cryptographic device, a facility for re-writing the EPROM or bubble memory and

some communication capability could be included to support remote updating.

One can imagine a number of variations on this simple scenario that highlight the

deficiencies of the monolithic TRM design. For example, if the vendor of the

personal computer wanted to sell proprietary application software to his clients,

secure secondary storage within the TRM would be required and the problems of

providing such storage within the design have been pointed out above. These

problems also arise if the vendor requires the object code produced by the language

system to be protected from disclosure, in order to hide the code generation

techniques employed. Similar problems arise in the context of nodes in a

distributed system. For example, a secure database residing at a node would have to
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he contained in secondary storage "ithin the TRM and here the lack of

demountable storage and the prohlems of large quantities of non-volatile memory

w111h11a TR M essentiall. preclude use of this design. Thus this design is inadequate

tiar many classes of applications.

2.3 Cryptographic Terminology, Concepts and Techniques

Cryptographic techniques are used in four distinct contexts in this thesis.

Network-based distribution of external software requires secure comn munication

between a vendor and his TRWs. ]'his method of software distribution is critical to

the monolithic I'RM approach, since that approach does not support secure T&A

storage, and it may be the preferred distribution method for the other design

approaches as well. Thiis section presents the basic comninication security

techniques necessary for secure, network-based distribUtion of external software.

The encry pted bus approach examined in Chapter 3 relies on secure communication

among 'RMs connected via a physically Unprotected bus. That chapter presents

modified communication security techniques for this highly specialized

comn munication environment (the bus). The encrypted storage approach of Chapter

4 develops special cryptographic techniques to protect data stored outside a TRM.

Finally, in Chapter 5, cryptographic techniques and protocols are used to distribute

external software to TRMs provided by third-party suppliers. This chapter is not a

general tutorial on cryptography; it merely attempts to provide some background

necessary to understand the cryptographic techniques employed in subsequent

chapters.
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2.3.1 Terminology and Basic Concepts

A cryptographic algoritlmi or cipher is an algorithmiic transformation pei form-ed

on data on a symibol-by-symnbol basis. In enciphering or encripling data, the

plaintext input Is transformed into unintelligible cipheriexi ou1tput. 'ihe inverse of
this operation is referred to as decrypion or deciphering and it transforms ciphertext

into the plaintexi from which it was derived [321. Thlese transformiations arec carried

out under the conitrol of a key. InI conrentional ciphers (CM) Such as the NBS Data

Encryption Standard (DES) 1231, the samne key is used for enciphering and

deciphering a collection of data. On the other hand, public-kety ciphiers (PKCs) Such

as the RSA algorithmi 1261 use different, but miathemnatically related, keys for

encryption and decryption. Thlese terms are illustrated in Figure 2-7.

key key

ENCRYPTION DECRYPTION

Figure 2-7: Conventional and Pub) ic- Key Cipher Con figurations

77



The System Model, IRMs and Cryptography

For both conventional and public-key ciphers the assumption is made that the

algorithmn is known not only to the users of the cipher but also to any attackers. The

secrecy, auwhwniici' and integrity guarantees6 accorded data transformed by these

ciphers derive from their mathematical structure and from the secrecy of keys used

to parameterize the ciphers. In conventional ciphers, an attacker cannot decipher

ciphertext nor can he generate ciphcrtext that will decipher into predictable

plaintext without knowledge of the key used to generate the ciphertext. Thus, in

these ciphers, the secrecy of the key provides concealment and the basis for

determining the authenticity and integrity of ciphertext. In public-key ciphers, the

key used to encipher data (key) need not be kept secret in order to effect
C

concealment integrity checking. Th1iis is because a diffierent key (key d), related to the

encryption key in a complex fashion, is used for decryption. Because of the
mathematical structure of public-key ciphers, knowledge of key does not allow a

C

cryptanalyst to determine keyd.

This property of public-key ciphers decouples secrecy from authenticity and

integrity. Data transformed under PKC key (key) carries no guarantee of
C

authenticity since this key is usually publicly available and thus anyone can encipher

data using it. Moreover, only the holder of the matching decryption key (key d) can

decipher data encrypted under key, so this scheme provides secrecy. Conversely,

data transformed tinder keyd can be deciphered by everyone, since key is public,

but such data can be verified as authentic and its integrity can be checked because

only the holder of keyd can generate ciphertext that is predictably decipherable

under key . (Despite designations as enciphering and deciphering keys, both PKC

keys transform plaintext to ciphertext and invert the transformation performed by

the complementary key.) Thus transformation Linder a public key provides secrecy

61n this context, data is considered authentic if it was enciphered by an authorized party and its

inlegriy has not bccn violated if the ciphcrtext has not be modified.
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whereas transformation tinder a secret PKC key provides a basis for authcriiCiity

and integrity checking.

In communication contexts, a PKC key pair is associated with each user. Secret,

authentic, integrity-checked conimunication between two users can be achieved by

transforming each message twice at the transmitter and at the receiver, as illustrated

in Figure 2-8. Thle transmitter first transforms the message under his secret key ('-

key d), for authenticity, and then under the public key of the intended receiver (R-

key ), for secrecy. (Both transformations contribute to the integrity guarantee.)
Upon receipt of the message, the receiver transforms the message tinder his secret

key (R-key d ), then under the public key of the transmitter (T-key ), to reveal th,

original plaintext. Of course, the secrecy, authenticity and integrity guarantees

provided by these transformations are valid only if both transmitter and receiver are

correctly informed as to each other's public keys.

TRANSMITTER RECEIVER

T-key d  R-keye  R-keyd T-key e

plaintexI t ciphortex, plaintex,
PKC  PC PKC

Figure 2-8: Providing Secrecy, Authenticity and integrity with Public-Key Ciphers

Even though public-key ciphers provide some features not available in

conventional ciphers, the former are not well suited to most of the applications in

this thesis. For example, public-key ciphers offer Some potential advantages over

conventional ciphers in distributing cryptographic keys. The first three applications
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of cr. ptography in this thesis, as noted at the beginning of section 2.3, do not

encounter c omplicatCd key distribuLion prohlems and would not benefit from the

use of public-ke) ciphers. Tlhus almost all of the techniques employed in this thesis

are based on conventional ciphers and public-key ciphers are employed only in

some applications in Chapter 5. In fact, public-key ciphers arc immediately

eliminated from consideration for most of these applications because of the

relatively low throughput achieved by their implementations, as described in section

2.3.5.

Good ciphers, both conventional and public-key, exhibit high resistance to a

variety of cryptanalytic attacks. Obviously ciphers must resist attempts by attackers

to determine the key required to decrypt a quantity of ciphertext or to discover the

plaintext from which the ciphertext is derived through examination of the ciphertext

(ciphertext only attack). Moreover, an attacker should not be able to deduce the key

used to decipher data even if he is given matching plaintext and ciphertext (known

plainiext attack). The same holds true if the attacker is given the opportunity to

select the plaintext for which matching ciphertext is made available (chosen

plaintext attack). These requirements are motivated by the fact that an attacker will

often be able to know or to choose some plaintext that will be encrypted and

become available to him as ciphertext. For example, in the context of protecting

external software, one might encounter enciphered relocatable program files,

portions of which are likely to contain easily predicted values. In the same context,

an attacker might be able to choose values that would become part of an encrypted

database, providing a chosen plaintext attack.

The ciphers selected for use in this thesis, the DES and the RSA algorithm are

designed to resist the cryptanalytic attacks described above. Nonetheless, one must

exercise care in using these ciphers or subtle weaknesses may arise. For example,

not all cryptographic techniques automatically compensate for plaintext that varies
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()%er"i a Vely Sall1 range of possible %alues or plaintext that colntain[s rcLi ii

patterns. Unless suitable precautions are taken, these plaintcxt chaicteristics may

bC \isile in the ciphertext, resulting in in formation disclosure. TechiqtLeS for

\eril\ ing the uuthenticity and integrity of encrypted data in the fIce of attacks often

rel on the presence of predictable information in plaintext and on error

propagation characteristics of ciphers. Since the plaintext encountered in this thesis

rna admit to a wide range of values, predictable information Must be supplied

explicitly for security purposes. Different ways of using ciphers yield different error

propagation characteristics and this must be considered in designing mechanisms for

checking authenticity and integrity of data. The following sections describe specific

techn iques for preventing disclosure and detecting modification.

2.3.2 Block Cipher Techniques

Most modern cryptographic algorithms (conventional and public-key) are block

ciphers, i.e., they operate on fixed-size blocks of plaintext and ciphertext. For

example, the block size of the DES is 64 bits and for the RSA algorithm a block size

of about 320 bits yields comparable security. The simplest way of using a block

cipher is sometimes referred to as the electronic code book (ECB) mode [161,

indicating the analogy to manual cryptographic procedures, and is illustrated in

Figure 2-9. (This and subsequent illustrations omit keys for clarity.) However, this

mode exhibits several shortcomings. If data to be enciphered is smaller than the

block size of the cipher, the data must be padded to produce a ftill size block.

Similarly, the entire resulting ciphertext block must be presented for decryption, i.e.,

it is not possible to decipher a partial block. If the data to be encrypted is longer

than a block it must be broken into block-size pieces and each piece enciphered

separately. This mismatch between the granularity of encryption and the size of

plaintext results in waste, e.g., on average half of each block may be wasted due to

this mismatch.
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plaintext I

lenciphe r

ciphertext

IdecipherII .
plaintext

Figure 2-9: Electronic Code Book Mode for Block Ciphers

With respect to concealment, ECB mode has an obvious deficiency, i.e., identical

plaintext blocks are transformed into identical ciphertext blocks. Thus plaintext

patterns that occur aligned on block boundaries are visible in the resulting

ciphertext. In the case Of the DES, if plaintext, when divided into 8-byte blocks,

exhibits block-size patterns, then these patterns will be visible in the resulting

ciphertext. Moreover, if the bit pattern used to pad short blocks is constant, an

attacker might be able to perform frequency analysis on the ciphertext blocks to

discover the plaintext. For example, if 32-bit words are enciphered individually and

caJh is padded with the same bit string, the resulting ciplicrtext blocks will vary only

,icr the range of values assumed by the'32-bit words, and this may be small enough
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to allow effective fiequcncy analysis by an attacker. Beca se of lose dclicinicies,

FCB mode is usually emlploycd only for tasks such as distribution of cr ptographic

keys, where the data is random and well matched to the block size.

These concealment problems can be solved by including in each plaintext block a

non-secret, unique bit string, a quantity designated as an (in-block) in/ialization

vector (IV), illustrated in Figure 2-10. (The term initialization vector is often used in

a more restricted sense in cryptography but it serves essentially the same function as

the quantity described here.) le inclusion of this bit string makes each plaintext

block different and thus each resulting ciphertext block is different, effectively

concealing patterns and compensating for limited range plaintext, e.g., short blocks.

This technique works since, in the DES, two plaintext blocks that differ by as little

as one bit yield ciphertext blocks that differ in approximately 50% of the bit

locations. '[his technique suffers fiom the drawback that a portion of each block

must be reserved for this tnique bit string, thus reducing available bandwidth in

communication applications or wasting space in storage applications. However, if

an application already requires inclusion of a unique bit string as part of each

plaintext block, e.g., sequence numbers in a communication application, this bit

string can serve as an IV so no additional space is wasted.

An alternative technique for combatting the same problem involves combining

each plaintext block with a (block sizc initialization vector, via modulo 2 addition,

before enciphering the block. This additive technique is not quite so secure as the

inclusion of an in-block IV since duplicate ciphertext blocks may result, providing

cryptanalytic opportunities for an attacker. For example, if two ciphertext blocks

are identical under this scheme, an attacker can work backwards fiom a knowledge

of the IVs to determine the sum of the plaintext blocks. If he has knowledge of

some of the plaintext in one of the blocks he can determine the value of

corresponding bits in the other block, If the range of the IVs is suitably large (say 64
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lIV plaintext I plaintextJ
[ init vecto r

encipher] Lencipherl

I ciphertext ciphertext

Figure 2-10: In-block and Additive Initialization Vector Techniques

bits), and the IVs are chosen pseudo-randomly, this method offers adequate security

since the likelihood of duplicate ciphertext blocks is quite small. The advantage of

this approach is that the IVs take tip no space in the blocks, but it is necessary to

know the Ix associated with a block for decryption. The values of the IVs must be

implicitly derived from some contextual information if there is to be any space

saving. For example, in a communication application the sequence number

implicitly associated with each transmitted block could serve as an IV.

The inclusion of a predictable quantity in each block provides a basis for checking

the authenticity and integrity of the block. The object here is to verify that the block

was encrypted by an authorized individual and that it has not been modified in any

way after being encrypted. For a block cipher such as the DES, modification of as

little as one bit in a cipher.ext block results in changes to approximately 50% of the

plaintext upon decryption. The same error propagation effect occurs if a ciphertext

block is deciphered tinder a key that differs by as little as one bit from the key used

to encipher the block. Thus, the inclusion of a predictable n-bit field in a plaintext
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block provides a check on the authenticity and integrity of the block %%hic"I an

attacker can subvert with a probability of 2". This is the probability that the n-bit

field is unchanged if the ciphertext block was modified or if it was encrypted under

a key other than the key used to decipher it. Such a quantity "ill be referred to as

an aulhenticii'/inlegrily check field (AICF).

Any predictable quantity can be included in each block as an AICF, e.g., a

constant bit string. However, the functions of an AICF and an IV can be combined

into a single field, reducing the space overhead that would result if an in-block IV

and a separate AICF were employed. Since a combined IV/AICF field must be

large enough to uniquely identify each block and large enough to detect spurious or

modified blocks this may not be the most space efficient technique. For example, if

the size of the IV required to uniquely identify each block is larger than the size of

the AICF required to detect modification, then an implicit IV and a dedicated AICF

could waste less space. Despite this ability to combine both functions in a single

field, the percentage of each block devoted to such a field can be significant,

especially if the block size is small. For example, in many applications a 16-bit

AICF may be adequate, i.e., an attacker is allowed a 2.16 chance of undetectably

violating the authenticity and integrity guarantee provided by the AICF. But in a

64-bit DES block this 16-bit field represents 25% overhead. One could reduce the

percentage overhead by using a cipher with a larger block size, but if the application

normally generates plaintext smaller than this block size, waste will result from the

occurrence of partially filled blocks.

One can reduce the percentage of space devoted to security measures through

block chaining encryption techniques. Block chaining techniques encrypt plaintext

of variable lengths (integral multiples of the block size) using some form of

feedback to cryptographically relate the resulting ciphertext blocks. nere are a

number of options for feedback mechanisms; the method described below (and
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plaintext-1 I plaintext-2 I litxt-3

lencipherl encipher lnihr

ciphertext- 1 - ciphertext-2 Fciphertext-3

Idecipherl decipher Idecipherl

Iplaintext-1 plaintext-2 i pintext-3

Figure 2-11: Plaintext-Ciphertext Block Chaining (PCBC)

later employed in Chapter 4) uses both plaintext and ciphertext feedback and is

designated as plainiexi-ciphertexi block chaining (PCBC) 1121. In this method, the

first block in the plain text chain is added (modulo 2) to a block-size IV and the

result is encrypted. Each subsequent block in the plaintext chain is added to the
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prcedinig ciphertc\i block and to thle accuin ii lat,1ed plain teit sLum and then

cnIcr\ pt[Cd. lI'his procedure, arid thle symmetric decry ption proccSs, are Illustrated in

Figure 2-11 lbr a 3-block chain. (To mlaxIII/ rimi1ethough'put onl (Cr~ptionl, thle

additions can be reordlered so that the preceding ciphertext block anid the

accumulated plaintex\t chain are added together, wile the current ciphertext block

is being dec13 pied. T[his sum is then added to the decr\ pied block to N ield the

original plaintexi.) The p~rocess is repeated flor each new plaintext chain.

The ciphertext feedback used here effecti~elx masks patterns m i in a plaintext

cha in1 sinrce each ciphertext block acts as an IV Rfr thle nlext ptaintlcxt block. 'I hie IV

)'rI the f-irst block, either added to the lust plaintext block (as shown ile figuire) or

an1 inI-block I V, sh )ild be different 1ibrj each chain to conceal duiplicate Iniit ial blocks

II iff'erent chains. If the I V can he contextuall derived as described earl ier, then

thle additive I V technique is more space efficient as the I V canl be Implicitly

aissociated with the chain rather than carried in the First block. ilhe plalitext

reedbaick empilloyed in IFCBC tmode provides finrward cirror propagauon. I.e., arty

modi lication of an cncr3pied block is propagated all thle \ki ay l- ough to thle cuid Of
thechin s hooughly as if' the modification had Occurred thle last block of' the

chain. Th'us an A ICF residing in the last block of the chain can be used to detect

modification anywhere thle chain. Sinrce an in-block IV im st reside in the fi rst block

of the chain and thle Al('F InUst be in the last block, there is no way to combine the

two in a single field In this cipher mnode.

Other chaining mod(es operate inI a similar kashion but use OWNl ciphetLx or- only

plaintext feedback. For example, in cip/wriexi block chainling mode (0I3C), only
ciphiertext fecedback is cnmplo3 ed and modification of'anl encrypted block propagates
only within the coriesponding plaintext block and has only slight effects onl the

following block in the chain. In this mode a conventional e'rror dltccuon code

(FDC), e.g.. a longitudinal parity check or a cycle redundancy check, is oftenlj 87
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employed since the error propagation required by an AICF is not present.

However, CBC mode is sonle hat simpler than PCBC mode and when used with art

EDC it provides adequate autlhenticity and integrity guarantees. (The FDC is

adequate in this case since an attacker cannot predictably modify the enciphered

plaintext or the EDC.) ['his mode is often proposed for communication applications

1161. Blhock chaining based on plaintext feedback alone is generally unacceptable,

since plaintext patterns may not be effectixely masked, even though Ifhis mode does

pro% ide forward error propagation.

2.3.3 Stream Cipher Techniques

The cryptographic modes described above do not accomnmodate plaintext that is

not anl integral multiple of the cipher block size without waste. The 64-bit block size

of tile DES is well suited to most of the applications in this thesis since two 32-bit

words fit into a DFS block. Much of tile plaintext to be encrypted is an even

nunber of words long and for large data structures or long messages wasting half a

block (32 bits) is usually not a serious problem. However, when plaintext is sub-

block size, e.g., a 32-bit word, this level of waste poses a serious concern. To solve

this problem, block ciphers can be used as stream cipher.v that encrypt plaintext

strings of any size. lie central concept is to use the block cipher to generate blocks

of pseudo-random bits, referred to as a cryptographic bit strean, portions of which

are added to the plaintext to conceal it. (Because the cryptographic strength of this

technique is based on the secrecy of this bit stream, PKCs cannot be applied here

directly unless they are used as CCs, i.e., with no public knowledge of the key used

to generate the cryptographic bit stream.)

There are a numnber of ways to generate a cryptographic bit streaii using a block

cipher, just as there are several choices for I'edback in the block chaining modes

described in the preceding section. For eKanIple, in what is often viewed as the
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simplest form of stream cipher, an au/okejy cipher 1321, bit stream generation begins

by enciphering an IV. The resulting crypto bit stream is added to plaintext, to

encipher it, and is fed back as input to the cipher to generate further crypto bit

stream, as illustrated in Figure 2-12. Decryption is identical to encryption, i.e., the

same crypto bit stream is added to the ciphertext to yield plaintext. Plaintext of any

size can be accommodated by this cipher, e.g., by selecting a fixed portion (a bit or a

byte) of each crypto bit stream block to combine with the plaintext and discarding

the remainder. Of course, discarding a portion of the bit stream causes the

performance of the cipher to suffer, e.g., Figure 2-12 shows only one-fourth of each

block being used so the cipher runs at one-fourth of its maximum rate.

shift register shift register

enciphe enciphe

discard discard

plaintext ciphertext plaintext

ENCIPHER DECIPHER

Figure 2-12: Autokey Stream Cipher Example
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Depending on the application, the crypto bit stream may be generated

continuously or it can be "rc-initiali/ed" periodically with a unique IV. Foi

example, in sonic communication applications a continuous bit stream is transmitted

to conceal all message traffic (or tie lack thercol) whereas in other applications a

new IV is used for each message. Note that tile IVs must be unique since they

determine the crypto bit stream, and if two messages were enciphered using the

same IV (bit stream), an attacker could add the messages oil a bit-by-bit basis to

yield the sum of the plaintext. A striking feature of this stream cipher is that it

provides no error propagation, i.e., if a bit of ciphertext is complemented, the

corresponding plaintext bit is complemented, but no other plaintext bits are

affected. (However, if a bit of ciphertext is lost, tile decrypted plain cxt will be

garbled due to shifting over of the crypto bit stream before addition.) 'hus neither

an AICF nor a conventional EDC can be used with this stream cipher for

authenticity and integrity checking due to this lack of error propagation. (An

attacker, knowing what kind of EDC is employed, can modify the plaintext in a

fashion that is invariant under that EDC algorithm.)

However, a criplographic error deieciion code (CEDC), a cryptographic ftunction

calculated on the plaintext, can be employed to detect modification. (A CEDC used

to authenticate data which is not encrypted is sometimes referred to as cyptographic

check digits [41.) F;nce a CEDC is a complex function of the plaintext on which it is

calculated and on the secret key used in the calculation, an attacker cannot modify

the plaintext in a fashion which is invariant tinder the CEDC. (An n-bit CEDC, like

an n-bit AICF, allows an attacker a 2- chance of tndetectably modifying the

covered plaintext.) A CEDC can be calculated in a number of ways. For example, a

block chaining mode like PCBC or CBC can be used to encrypt the plaintext

(padded if necessary to be an integral number of blocks long) and a portion of the

last ciphertext block generated in this fashion can serve as a CEDC (since it is a
cryptographic function of all the preceding plaintext). The other stream cipher
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mode described below also may be used to generate a CFDC. 'Tlus the lack of error

propagation in an autokey stream cipher does not preclude its use where

authenticity and integrity guarantees are required. However, providing these

guarantees requires additional operations which may translate into reduced

throughput or additional hardware.

Another stream cipher, cipher feedback mode (CFB) [161, is illustrated in Figure

2-13. To begin, a block-size IV is input to the cipher and encrypted to generate a

cryptographic bit stream block. The plaintext is added to this bit stream and the

resulting ciphcrtext is shifted into the cipher input and encrypted to generate the

next crypto bit stream block. If plaintext is supplied in sub-block size quanla, e.g.,

bytes or bits, then a corresponding portion of the crypto bit stream is used and the

remainder of each block is discarded, as in the autokey cipher described above. "lI'is

process is repeated until no more plaintext remains to be encrypted. Decryption is

accomplished by a symmetric, but not identical, procedure, i.e., generating the same

crypto bit stream and adding it to the iphertext to produce the plaintext. Figure 2-

13 illustrates CFB mode encryption and decryption applied to plaintcxt quanta that

are one-fourth block size.

In CFB mode, as in autokey mode, it is essential that each plaintext chain be

enciphered using a different IV. Since the crypto bit stream is a function of both the

IV and the plaintext in CFB mode, using the same IV on two plaintext chains results

in duplicate crypto bit stream only as long as the plaintext chains are identical.

Nonetheless, to avoid exposing any data, the IVs should be unique for each

independently encrypted chain. As befort, the IV may be implicitly derived or may

be carried with each chain. 'I'his mode provides excellent concealment of plaintext

patterns but the error propagation is limited. This stream cipher mode exhibits

error propagation analogous to CBC niode. If a bit of ciphertext is complemented,

the corresponding plaintext bit is complemented but subsequent quanta of plaintext
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shift register shift register

II 7 I I '

lenciphe encipher

discard I discard

plaintext ciphertext plaintext

ENCRYPTION DECRYPTION

Figure 2-13: Cipher Feedback Mode Stream Cipher

are unpredictably garbled until the input shift register is cleared of erroneous

ciphertext. For the DES, the shift register is 64 bits long and thus error propagation

affects 64 bits of plaintext following the quanta containing the error. This error

propagation characteristic means that the final enciphered quanta of plaintext in a

chain exhibits no error propagation at all. Sonic other stream cipher modes can

offer forward error propagation, but all suffer from the dcfcct that the final plaintext

quanta in a chain exhibits no error propagation.

Since the last quanta in a chain can be modified with predictable effects, one

cannot place an EDC or AICF and data it is protecting in this quanta. (An attacker

might be able to modify the data in a fashion that is invar iant tinder the EDC or he

could modify the data and not affect the AICF.) One can avoid this problem by
isolating the EDC or AICF in the last granule, adjusting the quanta size or padding
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the data if necessary to accomplish this. (An AICF can be used only with a stream

cipher mode that exhibits forward error propagation, not with the CFIB mode

illustrated here.) However, this need to segregate the EI)C or AICF imposes a

throughput penalty and may introduce some complexity when plaintext chains are

sub-block size. For example, to encipher 32 bits of data and a 16-bit EDC, the DES

must either adopt a 16-bit quanta for enciphering everything or it must change

quanta size from 32 bits for the data to 16 bits for the EI)C. The first approach is

simpler but requires three DES operations per 48-bit data-EDC chain, whereas the

second, more complex approach requires only two DES operations. If this lack of

error propagation were not a concern, all 48 bits could be enciphered using the

output from one DES operation. A CEDC, as described above for autokey mode,

also can be used to provide an authenticity and integrity checking capability.

2.3.4 An Application Example: Secure Network-based Distribution of

External Software

The monolithic TRM design presented in section 2.2.2 suffers from a deallh of

secure T&A storage. In order to distribute external software using this design, the

vendor requires a secure communication path between himself and each TIRM.

Even in system designs where secure T&A storage is available, network-based

distribution of external software may be preferred. Secure communication facilities

also may be used to transmit accounting or debugging information to a vendor, so

these facilities are important in all system designs. The following discussion

describes how to provide secure communication using the cryptographic techniques

developed in this chapter. This example introduces the security requirements

usually associated with connection-oriented communication and presents some

common techniques employed to achieve these requirements. Chapters 3 and 4

show how these requirements and techniques are applicable to the problem of

computer system design to protect external software.
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First it is necessary to define what is meant by secure TRM-vendor

communication. Communication bctxAeen the TRM and the vendor is effected by

exchanging messages on a fill duplex connection (virtual circuit) using some

communication facility, e.g., a public packet switched network [151 or the dialup

phone network. Assune that some standard transport- level communication

protocol 1251 is employed, providing a connection that is reliable in the face of(non-

malicious) errors. The security requirements For this application have been studied

extensively and are readily stated.

1. The text of messages must be concealed.

2. Characteristics of the connections should be hidden, e.g., the length of
messages and the identities of the ends of the connection. Observation
of characteristics such as these is termed iraffic analysis.

3. The authenticity and integrity of each message must be guaranteed.

4. Each message must be ordered with respect to other messages
transmitted on the connection.

5. The timeliness (currentness) of the connection must be ensured.

To achieve these requirements an additional layer of protocol, a security protocol,

is introduced. This protocol lies above the transport layer 7 and below the

application protocols used to distribute new releases of external software, to report

usage statistics from the TRM, etc. Figure 2-14 illustrates the format of messages in

the security protocol. In steady state operation, the security protocol accepts each

message generated by an application, prefixes it with a sequence number and a

control field and appends an EDC or AICF. The resulting message is encrypted in

its entirety and delivered to the transport protocol.

7A properly designed transport layer protocol can provide the facilities required for secure
communication with the addition of encryption. flowever most existing transport protocols do not
provide these facilities and thus a separate protocol layer is introduced here.
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Isequence# I control application data I EDCA F

Figure 2-14: Message Format for Secure Connection Application

To provide concealment and a basis for authenticity and integrity verification, the

entire message is encrypted using a block chaining technique such as PCBC or CBC

mode. (Fhe control field can be used to indicate if padding was needed and, if so,

how many padding characters were inserted.) These modes are simple, convenient

and well suited to this application. The sequence number is large enough, say 32-

bits, so that it does not cycle during a connection. To prevent duplicate sequence

numbers from being generated by the ends of the connection, the sequence number

space is divided in half and each end numbers messages using its half of the space.

For example, one end could count using odd sequence numbers and the other end

could use even sequence numbers. By placing the sequence number at the head of

the plaintext chain it serves as an in-block IV. The sequence number also orders all

messages on a connection, fulfilling the fourth requirement. 'he EDC or AICF at

the end of the message is checked to determine the authenticity and integrity of each

message in accordance with the third requirement.

The second requirement, preventing traffic analysis. _,,n be met in part by

padding messages and transmitting dunmmy messages to hide length and frequency

of transimlission characteristics. However, this technique wastes con III LI nications

bandwidth and may he too expensive to be feasible. Concealing origin/destination

patterns is even harder and cannot be accomplished on an enld-o-enid basis in most

communication networks. 'lThrough origin/destination analysis an attacker cotIld
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learn the identities of clients of various vendors, and by examining the volume of

text transmitted he could learn which programs were being distributed. Some

vendors may be concerned about these threats posed by traffic analysis and will

have to institute appropriate countermeasures (see [161) but in most cases vendors

%%ill probabl) ignore such threats.

,The final requirement calls for appropriate key distribution techiques and a

connection initiation procedure utilizing a claIlenge-response protocol. To illustrate

these measures consider the following scenario for a secure connection between a

TRM and a vendor. Key distribution in this application is quite simple. (For more

complex key distribution environments, one might use a public-key cipher in ECB

mode to distribute a DES session key, as described in Chapter 5.) At the time of

manufacture, or thereabouts, a secret master key is generated and loaded into each

TRM by the vendor. This master key is different for each TRM and is known only

to the vendor. To enable secure communication, the TRM establishes a connection

to a vendor computer using the transport protocol. (The assumption here is that the

TRM initiates the connection since the vendor is expected to be available via a

network at all times, but the TRM may be attached to a network only when

required.)

The TRM identifies itself to the vendor by transmitting its (unique) serial number

unencrypted. The vendor uses that serial number to lookup the master key for the

TRM and generates a random session key, to be used only for this connection. The

vendor then enciphers the session key under the TRM master key and transmits it to

the TRM where it is deciphered and used for further secure communication. The

use of a distinct session key for each connection offers several advantages since the

same plaintext enciphered under different keys yields different ciphertext. Thus,

the lVs used here need be unique only on a per-connection basis to provide

adequate concealment. Also, messages from previous connections between the
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vendor and this client or connections between the vendor and other clients cannot

be replayed or misrouted to confuse either end of the connection (the AICF or EDC

would almost certainly be invalid when enciphered tunder a different key).

With a session key in place, the vendor and the TRM are in a position to

challenge one another to verify the time integrity of the connection. Since the

vendor generated the session key, he knows the connection is current if the TRM

can send messages that pass the usual integrity and authenticity checks (since the

messages are enciphered under the session key). Thus there is no explicit challenge

carried out by the vendor. However, the TRM, must carry out a challenge protocol

to establish that the session key just received is current. The TRM effects this

challenge by generating a random bit pattern, encrypting it using the session key

and transmitting it to the vendor. The vendor decrypts the bit pattern, transforms it

in some predetermined fashion, e.g., complementing half of the bits in the pattern,

encrypts this response to the challenge and transmits it to the TRM. The TRM

decrypts and checks this response and if it is correct, the timeliness of the connection

is verified. This prevents either end from being tricked by a recording of a prior

connection initiation sequence. Once this procedure is completed, regular message

transmission can begin. (The messages exchanged during secure connection

initiation are distinguished from later traffic through appropriate values in the

message control field.)

2.3.5 Parameters for Actual Ciphers

To complete this discussion of cryptographic techniques, it is necessary to project

appropriate values for cipher parameters, based on existing ciphers and

implementations, just as processor capabilities were projected in section 2.1.2. The

DES serves as our paradigm for conventional ciphers since it is the most thoroughly

studied, modern conventional cipher described in the open literature and since there
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are a number of hardware reali,ations on which projections can be based. The DES

operates ol 64-bit blocks of text and it employs a 56-bit key. Tile algorithm

performs an initial permutation on the input block and divides it into two 32-bit

half-blocks. A round of the cipher involves expanding the half-block, adding in

selected key bits, performing a substitution and a permutation and then adding in

the other half-block and exchanging the half blocks. Sixteen of these rounds are

performed and the half-blocks are concatenated and permuted again to complete

fhe encryption/decryption process.

The fastest current DES implementation (a 4-chip set developed by Fairchild)

transforms a 64-bit block in about 3.2 s and requires another 1.6jis to load or

unload the data (8 bits at a time), for maximum throughput of about 13 Mbits/s

[14]. This chip set, like many other implementations, allows loading of input while

the algorithm is executing. Discussions with the designer of this DES chip-set

indicate that much faster, single-chip implementations could be produced over the

next 3-5 years if suitable demand develops. The projected implementations will be

capable of transforming a 64-bit block in 500-10OOns, corresponding to a bandwidth

of 64-128 Mbits/s. (The data paths for loading and unloading are likely to be 16 or

32 bits wide for the intended applications.) Even if the next generation of DES

chips do not quite achieve this speed, many of the protection mechanisms proposed

in this thesis, most notably encrypted storage designs in which primary memory is

packaged with the processor, can be implemented without significant performance

problems.

The algorithm developed by Rivest et al. (the RSA algorithm) serves as the

paradigm for public-key ciphers for several reasons. The RSA algorithm is the most

widely known and careftlly studied public-key cipher, one for which a hardware

prototype has been constructed and tested, and the only public-key cipher that

supports the double transformation technique for authenticity and integrity
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verification described in section 2.3.1. The algorithm encrypts and decrypts blocks

of data by expunentiation with respect to a modulus that is the product of two large

primes. The encryption and decryption keys are the exponents, Since this

algorithm is not a standard no specific block size has becn mandated, but to provide

security comparable to that of the DES, blocks (and keys) should be about 320 bits

in length [17]. (Public-key cipher block and key sizes are generally much larger than

those for conventional ciphers because an attacker can carry out only an exhaustive

search for a conventional cipher key, but he can search lbr a secret PKC key using

the mathematical structure of the public-key cipher.) This block size could be

changed to better fit application requirements, however decreasing the size weakens

the cipher and increasing it reduces the encryption/decryption rate. As noted

earlier, the prototype RSA single-chip implementation exhibits a projected

throughput of about 5 Kbits/s [281.

2.4 Conclusions

The first portion of this chapter described in greater detail the computer system

model used throughout the remainder of this thesis. This model describes a fairly

conventional, bus-oriented 32-bit computer that is characteristic of many current

mini- and microprocessor designs. The model details introduced in this chapter are

those required to design the protection mechanisms developed in Chapters 3 and 4.

However, not all of the protection mechanisms depend on all of the system

characteristics described here. Thus, some of the protection mechanisms are

independent of many system details.

The second portion of this chapter examined tamper-resistant modules (lRM) in

detail and described how external software could be protected in a computer system

based on a monolithic TRM design. The TRM concept is important since it
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embodies all of the physical protection characteristics that depend on the level of

security required in a particular environment. In this fashion none of the other

protection mechanisms developed throughout the thesis need deal with physical

protection issues. The monolithic TRM design presented in this chapter might be

adequate for some applications but it exhibits a number of limitations, e.g., it cannot

support demountable storage media. This motivates the Use of cryptographic

techniques to overcome these limitations. The last portion of the chapter introduced

some terminology, concepts and techniques from modern cryptography. This

material is included to provide background for readers who are not familiar with

this area. The explanations provided here are not intended as a general primer on

cryptography, but rather are directed toward the specific application areas

encountered in the thesis.
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Chapter Three

An Encrypted Bus Approach to

Protecting External Software

The arsenal of cryptographic techniques presented in section 2.3 suggests several

ways to protect external software in computer systems without enclosing all of the

security relevant components in a single TRM. This chapter explores in detail an

approach based on viewing a computer system as a miniature communication

network. In this approach, each security relevant component (or collection of

components) is enclosed in a TRM and communicates with other components over a

physically unprotected bus. Each TRM is equipped with a special cr'ptographic bus

intetface (CBI) that provides secure communication among the TRMs. The major

advantage of this approach over the monolithic TRM design is that it permits

distribution of the secure components among several TRMs. Thus it becomes

possible to incrementally change a system through selective replacement or addition

of TRM-packaged componenits (for maintenance or expansion) and many problems

associated with TRM sizing become more manageable. One might even provide a

form of demountable storage in this type of system, by packaging the media and its

access hardware in a demountable TRM, although such storage would not be

competitive with conventional, demountable media in terms of cost or convenience.
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3.1 Configurations and Overview

lie s ,sten+ confligurations picttred in Figu res 3-1 and 3-2 characterize the ways

in M hich TIRM packaging can be emploed in this conunUnication security design

approach. SS'ITENI A represents the smallest change froin the monolithic TRM

design. providing a separat TRNI only for the transfer and archival (T&A) storage

device. SYS''EM I provides greater flexibility by emplo)ing separate IRMs for

secondary as well as T&A storage devices. In both of these configurations the

organiLation of the processor and primary memory, i.e., the presence or absence of

cache or a dedicated memory bus, is irrelevant since they are contained wholly

within a single TRM. In these configurations, the cryptographic bus interface (CBI)

for the main TRM (the TRM containing the processor) also operates like the secure

bus couplcr (SBC) described in section 2.2.2, i.e., it keeps unencrypted traffic in the

main TRM from appearing on the bus outside this TRM and it restricts access to

primary memory locations by DMA devices outside the main TRM. In SYSTEM C

and SYSTEM D the maximum degree of flexibility available in this design

approach is attained as each device is packaged in a separate TRM. Here the choice

between single and dual bus configurations has a significant impact on the design, as

detailed in the following sections.

The techniques described in section 2.3.4 could be applied directly to this design,

but the characteristics of bus communication differ enough from those usually

encountered in general communication environments to warrant modifying those

techniques. For example, since bus operations involve very few bits (about 32 bits

of data or address plus some control bits), the additional information required for

security (e.g., EDCs and sequence numbers) represents a significant percentage

increase in the amount of data transmitted. Transporting this extra information

requires either additional bus lines, increasing the cost of bus interfaces, or

additional bus cycles, increasing transaction time and reducing bus availability. In a
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similar vein, the high speed, low delay nature of bus transmission means that any

bandwidth limitations and delays introduced by cryptographic and protocol

techniques could dramatically slow down the system. Ilius, in adapting

communication security measures to the bus environment, special care must be

taken to minimi.e delays, maximize bandwidth and reduce the amount of additional

information transported with each operation. Moreover, the additional hardware

required for secure bus communication must not significantly increase the cost of

the computer system.

The cryptographic techniques developed in this chapter are carefully tailored to

the bus environment, taking advantage of the highly structured nature of

transactions and the high reliability of bus communication to mininize overhead on

bus transactions. Special cipher modes and error detection techniques are employed

to minimize the number of additional bits transmitted and the delay associated with

securing bus transactions. In engineering protection mechanisms for the encrypted

bus approach, three classes of transactions involving TRM-packaged system

components are distinguished:

1. Processor-generated references to primary memory

2. Transfers between primary memory and DM A peripherals

3. Transactions used by the processor to control DMA peripherals and
used by these peripherals to interrupt the processor

The first and third transaction types are referred to as simple in contrast to the

aggregate transactions used to effect DMA transfers. Transactions of the first type

constitute tle bulk of bus traffic. Any reduction in bandwidth or increase in delay

experienced by these transactions significantly affects system performance.

Transactions used For DMA transfers constitute a much smaller percentage of all

bus traffic and they are qualitatively different in that they deal with aggregates of
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data, Vl s latter Characteristic makes it possible to i-cduce per-transaction overhead

b aidating a data ag-gregate as a \'i ole rath~er th- ii checking eacti word of the

aggregate as It is [I'lasfc e-d. The last t~ pe of trainsaictions, those employed in the

cont iol of DMA8 peiphcrals. are \ cry infr-equent compared to the other types of

Iransactlolls, and thus system performnance is affected ont) slightly if these

transactions becomne somiewhat "slower."

3.2 Security Requirements for the Encrypted Bus Approach

As noted in Chapter 1, vendors have two major reqtIIrIIenieiits for- protecting

external Software In this context: preventing release ot and detecting iodlitication of

informiation. In computer systemis based on thle encrypted bus alproach, the bus

conIsitutes thle oni Vt.ilncrable, seeii-ty relevant portion of the systemi .1nd( thuLs bus

transactions are tile principal target for an Intruder. Even though the bus is a

broadcast transmission mlediumn, the flow of data amiong devices is actually

connecction-like in nature, not broadcast oriented. 11we flow of' data amiong 1kM-

packaged devices corresponds to the three types of transactions described inl thle

preceding section, i.e., diata flows between the processor and primary miemory,

between primiary miemory and DMA peripherals and betweeni the processor and

these peripherals. Thle data flow is thuis imnplicitly segregated into distinct (duIplex)

connections, one between each pair of devices as described above. Hence the

requirements for secure bus operation are, at a high level, the samec as those for

general purpose, connection-oriented comnmu nication environments as described in

section 2.3.4: preventing disclosure of miessage text and traffic analysis, ensturing

message atuithen ticity, Integrity and ordering, and ensuring the timeliness of the

connection.

BA11 of the 'IRM-pxkagcd pcriphcrals are assumd to be IDMA devices. If non-I)MA priphrals

were cemployed. this same class of transactions would be uscd for control purposes
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l'hese requirements are easily translated to the context of bus cOnlli fll ii iCation

among TRM-packaged devices. Here, disclosure of message text refers to exposure

of tie data in PRESENT-I).VI'A operations. TIraffic anal sis in this context Iix olves

exposure of the addresses in PIIESIENfT-AI)DRSS operations, idntification of the

TRMs engaged in each transaction, determination of operation types and

obseration of patterns of data transf'er. 111c authenticity, integrity and ordering

requirements are directl) applied to the bit patterns representing each operation on

the bus. Thus each received bit pattern must be checked to verify that it was

generated by a CBIl-equipped TRM in the s.stem, that it x as not modified en route

and that it arrived in proper order with respect to other operations between this

de\ice and its partner in this transaction. lh1 Cl Is must be initialized to a known

state and must verify the timeliness of connections before data transmission may

begin.

In this context traffic analysis may be a more serious threat than in the client-

xendor communication scenario described in section 2.3.4. For example, by

observing the pattern of references to memory made by a processor, noting the

locations accessed and whether the processor reads or writes these locations, an

attacker may be able to deduce quite a bit about the nature of the procedure being

executed. Similar observations of data transfers between primary memory and

cache or between secondary or T&A storage and primary memory provide clues as

to the nature of the procedure. How much information can be gained in this fashion

depends to a great extent on the system configuration. For example, SYSTEM C

and SYS'TEM 1) provide more opportunities for traffic analysis than SYSTEM B

which in turn provides more opportunities than SYS'I'EM A. Note that adding a

cache to the processor in SYSTEM C or SYS''EIM I) reduces the opportunities for

traffic analysis since most references to primary memory are satisfied by the cache

and thus do not result in transactions oitside the processor TRM.
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Ihe a1mount of iii formation gained thro1gh tralfic analysis also depends on the

extent to Much characteristics o" traffic are %isible. In the worst case an attacker can

discern the addresses in PRII NI'-Ai)I)iESS operations, ats well as identify the

operation types. In a less severe scenario an attacker could identify the TRMs

.-- olkdc in a transaction and determine the transaction type but would not be able

- to discov'er the specific locations involved in the transfer. Although it would be

prca'crble if all traffic anai)sis were prevented, as in the monolithic TRM design,

this is prohibitively costly to achieve because of bus characteristics and so some

compromise is required.

While it is possible and practical to conceal the addresses hM PRIESENT-

AI)IRESS operations, it is not feasible to hide origin-destination patterns at tile

TRNI level. An intruder cal passively wiretap the bus belwecn each TRM and

discover vhich TRM is transmitting, but not which is receiving. However, bus

transactions follow a very simple pattern of a request operation 1I6lowed by a

response, so the intruder can easily determine which TRMs are involved in a

transaction. Since the identity of the TRMs involved in a transaction cannot be

concealed, the only way to obscure origin-destination patterns is for TRMs to

generate dummy transactions at random intervals. Yet if the dummy transactions

interfere with genuine bus traffic severe performance degradation may result.

If buses were multiplexed in a time division fashion, with each TRM assigned a

time slot to carry out a transaction, the dummy transaction technique could be

employed. But the deniand access nature of buses and the arbitration schemes

commonly employed make this technique infeasible for two reasons. First, a device

cannot know in advance whether a dummy transaction would conflict with a

genuine transaction in bidding for the bus during an arbitration procedure. Second,

even if a dummy transaction were initiated only when there were no genuine

demands, the bus would be busy for an interval during which a genuine demand
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might arise. In a system with a priority structure 1lr bus arbitration the fiist

problem could be overcome by haming the lowest priorit, device (usuall) the

processor) he the only generator of dtinmy tran)sactions, but the second prl)blern

would remain. Only on a dedicated memory bus with transaction interleaving could

the processor/bus coupler inject dummy transactions without degrading bus

performance.

The preceding analysis suggests that preventing origin-destination analysis and

masking general patterns of bus traffic at the TRM hcvel is infeasible except in

limited contexts. Hiding the types of transactions, i.e., preventing an intruder from

distinguishing among read, write and inlerrupt transactions or their extended

counterparts, also is infeasible in most contexts because the patterns of bus

utilization and/or the duration of the transaction are different for each type of

transaction. Thus signals on bus control lines, i.e., lines other than A/l)-31, need

not be concealed. Only in the context of a dedicated memory bus with transaction

interleaving could these transaction characteristics be hidden. (This type of bus

arrangement is highly analogous to a simple, full duplex communication link and

thus is amenable to link encryption techniques, unlike a general purpose or I/O

bus.) Thus, if traffic analysis threats such as these are a major concern,

configUiations such as SYSTEM A or SYSTEM B should be considered.

3.3 Securing Simple Transactions

This section develops techniques for securing simple transactions. These are the

transactions used in the control peripherals in all Four system configurations and in

processor-memory transfers in SYSTEM C and SYS'TIM D. 11e same protection

mechanisms are applied to both types of transactions. Processor-memory

transactions will be processed more quickly than control transactions only because

109



;\it Ilicrylpted Buis Approach

thle Clils at thle Otis coupler and primary ruemor will in1COrporaLc. mlultiple

cry ptographic devices and extra bus lines to achieve greater parallelisin. (The need

to em pllo\ additional buIs lilies to transport er-ror, detection Inflormation for this type

of, tranusactitonl strongly mlotivates adoption of the dual Otis con liguration, SN'S'I'NI

D. to minimnize thle cost of the extra linies.) Otherwise. the two transaction types are

treated identically, slimplify Ing CBIl s\ystemn design.

For Simphe transactions, encryption is required both for secrecy and to enforce

authenlticity, inert an ordering re(iremenicts for transactions. Of course the

data in PIWSKN I-1ATR operations ntmst be concealed, and If traffic analysis is a

concern, thle addr esses in PRFISFNI'-AIDl)U1SS operations also nitist be concealed.

In [lhe case of a siimpic read tr-ansaction1, tile buLs Master mutst yer fv that the data

returned in at PB ESENTr-I)A'A is from the location speciftied in thle immnediately

preceding I'llIESEN'I'-ADIR FSS. that the returned data has not been modified Inl

t ranlsill ission amid that it is timely (not a copy of data from a prev'ious btus operation).

lIn the case of a simple write transaction thle slave mnust verify thle aulthlen1ticity,

integrity and ordering of each Il SEN-;kmmi)Rl.~s and lPRESEN'I-lAFA and

the master muLst (1o the same11 for each ACKNOWAKI)CEi. Onl anl interrupt, thle

master mLISt Verify thle authent~licity, itegrity and ordering of the vector in the

P'llESENT- DATA and the slave miust do the same for the ACKNOWLEDGE it

receives.

Note that the ordering requIiremnlts st-t fbrth here are strictly per-connection, i.e.,

transactions between the processor aind primary memory are explicitly ordered

amiong themselves but are not explicitly ordered with respect to transfers between

DM A devices and primary memory. Thus thle requirenients e~plicitly impose local

ordering (on each connection) but not anl explicit global ordering. Yet global

ordering is important. For example, datit may be written into primary memrory by

the processor and then transferred to secondary storage. These two transfers take
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place o\er two distinct connections and thus do not fIll under the explicit. per-

connection ordering rCquirements set forth above. I lowever, the processor initiates

all data transfers, either directly or through control of DMA device activitics, and

thus it imposes a global ordering of these transfers even though the transactions are

not explicitly, globall) ordered. For example, in the example noted above, the

processor will not initiate the DMA transfer to secondary storage until it has written

the data into primary memory. Thus global ordering is imposed imlplicitly by the

processor, relying on explicit, per-connection ordering of t ransact ions.

Readers who do not wish to delve into the details of how simple transactions are

sectired should skip to section 3.4 (page 132), to the discussion of how aggregate

transactions are secured.

3.3.1 Securing simple read Transactions

The security requirements stated above for a simple read constitute a relaxation of

those stated in section 3.2 in that the slave does not carry out any authenticity,

integrity or ordering checks on a PRESIENr-ADDRESS. These relaxed

requirements allow an intruder to sLbmit a spurious PRES.NT-Ai)DIESS to the

slave and receive an encrypted IRlESENT-DATA response. A spuriols PIl",NENT-

ADDRESS will not adversely affect system security so long as the resulting

PRESENT-DATA cannot be tised to spoof the master, i.e., the master must be able

to verify that a PRfSEN'- DATA is an authentic response to the l'RiSENT-

ADIRESS just issued by the master. (Of course, the concealment nechanisms also

must not be affected by this relaxation.) ! 1 the checks noted above are carried out

oi each PRESENT-I)ATA, then the master cannot be spoofid in this fashion. 'llus

this relaxation of requirements does not introduce any new vulnerabilities and it

avoids the adverse performance effects associated with calculating and transmitting

an error detection code as part of each PIISENYI'-A1I)IWSS in a simple secure

read.
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For processor-ill Cilor transactions, the cryptographic facilitics must exhibit a

thlotglgptit stufficient it) keep pace with bus operation and must introducc minimal

delay. Since both addresses and data are to he concealed on the bus, cryptographic

de% ices must e\hibit a band% idth of about 106-213 Mbits/s at peak bus utilization.

(Thcse figures are for a cachcless processor; for a cache-equipped processor an even

higher bandwidth is required.) Since the maximum bandwidth projected for single-

chip DES deices ranges from about 64-128 Mbits/s, these devices are not capable

of meeting peak bus traffic requirements in comparably scaled systems. (The

assuimptiou here is that one \A ill employ last DES chips in conjunction \kith a fast

bus and fast primary nemory, and slow DS chips with a slow bus and memory.)

Moreover, these DES devices require about .5-1.0p±s to transfbrm a 64-bit block, a

processing delay equivalent to five bus cycles, and this delay may be a serious

problem even if the bandwidth is adequate. In SYSTEM C and S'STEM i) the

memory and the bus coupler CBIs must keep tip with processor-memory

transactions and this is a difficult task.

A stream cipher mode of operation, rather than a block mode, is essential here

because of the need to maximize throughput and to minimize delay. Only about 32-

bits are encrypted in each bus operation, creating an immediate granularity

mismatch between the plaintext and a block mode ofoperation. A block mode also

imposes a delay (' ) to encrypt and decrypt the data since the algorithm cannot be
C

executed until the text is available. To better understand why block mode was

rejected, consider the processing steps involved in a simple secure read based on

ECB mode encryption. The event graph and timing diagram in Figure 3-3

illustrates these steps. The address in the PitESENT-AlI)RFMSS and a unique

IV/AICF are encrypted using ECB mode (Cl), transmitted (TI,T2) and deciphered

at primary memory (C2). (The IV/AICF used here is just a sequence number.) The

data is retrieved (A), enciphered along with the incremented IV/AICF (C3), and

transmitted to the processor (T3,T4) where it is deciphered (C4) and the AICF is

checked (=).
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Figure 3-3: Event Graph and Timing Diagram for an FCB Mode Secure Read

'Fie total transaction time for this ECBI mode simple secure read is 4T + 4T +
c I

T (25 bus cycles), as compared to a standard read time of three bus cycles. The
a

timing expression is easy to derive since there are no parallel processing steps in the
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e\Cent graph, and th'it Is thc root A' the pciloimance problem. 10 support the

max ml ui.1 transaction rate as a standaird systeml, one would have to employ

additional cry ptographic uniiits. intei leave transactions and add another 32 bus lines

(since M~ ice as many bits arc transmitted here as In a staindard read). These changes

wouild significantly increase the cost of CHils. Even with these added facilities, this

design exibits an inherent delay that translates into over a 730% increase in

effecti\ e memory access timle for a cacheless processor. For caclle-equijpped systems

a standard extended read couldl be secured if ian analogous fashion, but the effective

memory access time wotild still increase b) about 48-1,20%, TIhese dlelays are so

great as to prccludlc the use of this miode even \kithi the C'31 enhancements noted

above.

A stream cipher miode of operation provides opportuinities For parallelism and for

preconiplation of tile cryipto bit stream, so that a high throughput rate can be

maintained with nminiimal delay. Since encryption and deccryption are accomplished

by adding (modulo 2) cryptographic bit streamn to text, if the bit stream can be

computed in advance, alimost no delay is introduced fior encryption and decryption.

However there are two( problemls if a stream cipher niode suIch as CFB is Used. First,

in order to take advantage of the error propagation characteristics of CFB, the

quanta size must be adjuisted so, that data and FL)C are covered by different crypto

bit streamn qutanta. In this application the data tistusally 32-hit words or addresses,

sthe quanta size wold probably be 32 bits. This quanta size halves tihe bandwidth

provided by the cijpher, a ser-ious problem given the timing of DES calculations and

buts cycle times for the systenms of interest. Second, there is a delay (T') in providing

tile crypt() bit stream for the EPC. since this hit streamn cannot be generated Until

the data being protected has been cncr-)pted. (Remember, the ciphertext must be

fed back into the algorithm to generate the next quanta of cr) pto hit stream.)
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To avoid these problems of reduced bandwidth from cryptographic dc\ iccs and

substantial delays for transmission and checking of EDCs, a degenerate firm of

aitokey cipher mode is used. Ihis stream mode employs no feedback from

cleartext, ciphertext or the crypto bit stream. Instead, each block of crypto bit

stream is generated using a unique IV. Each IV is formed by concatenating a bit

stream ID and a counter that is incremented each time the algorithm is executed.

The bit stream ID distinguishes cryptographic bit streams generated Under the same

key. This stream cipher mode exhibits several very important properties. For

example, n cryptographic devices can be used in parallel to generate a single bit

stream by initializing the counters to the values / through n and incrementing by n

each time (using the same bit stream ID for all). This makes the output appear as

though it came from a single, fast cryptographic device and allows using different

crypto device configurations at each end of a connection, e.g, units of differing

speeds or different numbers of units to generate the same bit stream. Moreover,

since no feedback is employed, crypto bit stream blocks can be generated at the

maximum rate for crypto devices that allow loading the next input while the

algorithm is being executed (a common design feature in many DES chips).

For securing bus transactions, each TRM generates two distinct bit streams for

each device with which it communicates: a transmission bit stream and a reception

bit stream. Thus, for each connection, one crypto bit stream is used to encipher bus

operations transmitted by the TRM and another bit stream is used to decipher bus

operations that the TRM receives. (Of course these terms are relative since a

transmission bit stream at one TRM is a reception bit stream at the TRM that is the

target of the bus operation.) In communications parlance a different crypto bit

stream is associated with each independent simplex channel. The endpoints of each

connection generate the two bit streams for that connection in synchrony so that Vs

need not be transmitted and so that the receiver of an operation can precompute the
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hIt 'trcan needed to decipher the incoming operation. Tlhe use of a different bit

stream lor uI- each channel is Uniportallt. If the saile bit stream were employed for

more than one simplex channel, it \would be necessary to impose additional

cOIISI F.I Ito prevcnt two TRMs from transmitting data enciphered under the same

bit stream.

This stream cipher mode permits encryption and decryption of bus operations

\%ith almost no delay, assuming a sufficient number of cryptographic chips are

emplo)ed in parallel. However, this stream mode does not provide any error

prop~agation fir authenticity and integrity checks and thus a cryptographic error

detection code (CEL)C) must be elnplo~ed for that puirpose. Using a CFL)C, the

generalion of crypto bit strean for encrypting and decrypting data is independent of

the CFDC calculation. 'Ilius one DES chip can be dedicated to calculating the

CFDC and crypto bit stream generation can proceed in parallel using other DES

chips.

Since stream mode encryption and decryption can take place with no appreciable

dela, and can keep pace with any transmission rate (using multiple units in parallel),

the transaction time for a simple secure read based on this design exceeds the time

for a stamdard read only by the amount of time devoted to the CFI)C generation and

checking. The simplest way to calculate a CE)C in this application is to encrypt the

data to be protected using ECB mode, and to transmit a portion of the resulting

ciphertext block. (It is not necessary to transmit the entire CFDC block since the

receiver of the data can perform the same calculation on the data and compare the

appropriate portion of the result to the received CEDC bits.) If a full, 16-round

DES encryption is performed to calculate the CEDC, the delay introduced by this

operation is T, no better than the delay provided by CFB mode. However this
C

delay can be reduced by operating on the plaintext for less than the full 16 rounds

and by transmitting a portion of the result encrypted using stream mode.
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The idea is to reduce the time required for CEDC calculation but to maintain

security by using enough rounds and by stream encr)pting the resulting CE)C.

After five rounds of the DES, every bit of the output is a complex, non-linear

Fulnction of every bit of the input and of every bit of the key. 'lle error propagation

provided by five rounds ofthe DES makes it impossible to change data in a fashion

that is invariant under this CFI)C. Also, if the CDC is strean miode cncrypted

belbi transmission, the intruder cannot discover the valie of a CFDC except

throigh cryptanalysis of tile full 16-round DES. In order to tallper with data

covCied by the CEDC (and not be detected), the intruder must either be able to

predict tile CFDC' generated oil a known inplut or be able to predict tile changes in a

CI-DC resulting froi coiplementing a bit in a known or tinknown input. Because

all of the key bits are involved in determining the valie of each output bit, each of

these tasks is probably equivalent to breaking a five-1olnd DES, i.e., discovering the

key. As there is no indication that a five roLnd DES can be brokeni by other than a

brute force attack, and since the matching cipheilext required for such an attack is

itself encrypted under a full strength DES, there is good reason to believe than an

intrudier cannot subvert this CEDC scheme.

Figure 3-4 illustrates the steps involved in a shiple secure read employing the

stream mlode enciphering/dcciphering and the CFDC schene described above.

The master begins by generating its transmission crypto bit streai (Cl) using the

stream cipher procedure described above. The address in a PIRFSEN'-AI)DIIESS

is enciphered using 32 bits of that bit stream (X1) and the result is transmitted (TI).

nhe address is deciphered at the slave (X2) using the corresponding portion of the

slave reception bit stream (C2). The address is used to retrieve a word from memory

(A). The slave generates its transnission crypto bit stream (C3), enciphers the

retrieved data (X3) using 32 bits of this bit strean and transmits the result in a

PRESENT-DATA (T2). lie master deciphers this operation (X4) using the

corresponding portion of its reception bit stream (C4).
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address data confirm

Master

Slave

Figure 3-4: Event Graph for a simple secure read

While steps X3, 72 and A4 are taking place, the slave can calculate tile CEDC

(El), using both the address and data as input. Once the CEDC is available, a

portion of it is encrypted (XS), using more of its transmission bit stream from C3,

and the result is transmitted to the master (T3). At the master, once the data is

decrypted (X4) using corresponding master reception bit stream from C4, it is

concatenated with the address to calculate the CEDC (E2). When the CEDC

calculated at the slave arrivcs and is decryptcd (X6), it is compared (:) with the

corresponding portion of the CEDC calculated at the master to verify the

authenticity, integrity and ordering of the transaction. The decryption of the slave

CEDC (X6) and the comparison (=) can be re-ordered and re-associated (the

master CEDC can be added to the appropriate crypto bit stream and the result
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col p red to tIhe incoming, encr\pted sla e Ct)C) if pcI CiIanlce is ip I. I ed b)

this alternati\ e ordering of steps.

Since master and slave generate di l1'ren t transmission1 bit stireams, nei thrc- Mill

transmit data enciphered under the same bit stream that the other is using to

encipher data, regardless of attacks, and thus concealment is cnsu red. If the data in

the PRESENT-I[AT.\ is modified or if the data is not from the requested location,

this will be detected since the CEDC is a futnction or both. The timeliness of tile

transaction also is assured by the use or different crypto bit stream for each bus

operation and by the CEDC. An old transaction w.ill be improperl. decrypted

because of tile uniqueness of the crypto bit stream and this will result in a mismatch

in the CEDC check. The intruder cannot compensate for the differences in tile

crypto bit streami unless he can calculate CEDCs, a feat made impractical by the

scheme used here. Thus this design achieves all of the security requirenents

established for simple read transactions at the beginning of this section.

Tle minimum transaction time for this simple secure read is 2T + T - T (5
I a e

bus cycles) as derived from the timing diagram in Figure 3-5. However, tile data is

available at the master after 2T + T , the same as for a standard read. Thus
I a

unverified data is available at the master with no additional delay from the

beginning of the transaction, but total transaction time increases by 66%. A

processor employing pipelining might be able to "backup" if data is discovered to

be invalid within two bus cycles after its delivery, but most systems will have to

abort and shut down under these circumstances. In many cases, it will not be

acceptable to deliver unverified data and the master will incur a 66% increase in

effective access time. 11is is clearly unacceptable for processor-memory

transactions. However, in a cache-equipped system, a secure extended read can be

implemented in a similar fashion and the effective average memory access time for

verified data increases by only 4-9% in this case. This increase is small enough to be

acceptable in most applications..
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Figure 3-5: Timing Diagram for a simple secure read

Delay in delivery of data is not the only concern here. For processor-memory

transactions the maximum standard transaction rate should be attainable and bus

utilization should not increase significantly. The effective memory access time

calculations performed above assume that successive simple secure read transactions

can be issued at the same maximum rate as standard read transactions. Unless the

next transaction is allowed to begin before the CEDC of the preceding transaction is

transmitted, this maximum rate cannot be achieved. Ilhus, for processor-memory
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Iransactiolns, (,I)C ItranmIsSIon 1LISt be in crlcaed Milh address and (aLia

transmission. One night attempt to transmit the CF)C on the A/I)(-31 lines

during the idle cycle in the middle of simple secure read and simple secure write

transactions (see Figures 3-5 and 3-8). lowever, this idle cycle will not alkays occur

at the time Mhen the CFDC should be transmitted. Moreover, the scure %ersions

of ex tended transactions do not prov ide such idle cycles.

'T1iis analysis suggests that a separate set of bus lines is required to support

interleaving of CFDC riansmissmons for processor-memory transactions. Sixteen

additional lines (('EI)'t- IS should su f'fice for most applications since, if 16 CFI)C

bits are transmitted for each transaction, an attacker has a 2 16 chance of

undetectably tampering with a transaction. These bus enhancements (extra liles flor

CEDC transmission and interleaving of this transmission) are required only for

processor-memory transactions, so they affect only SiSTENi ( and SYSTENI D,

where the bus segment between the processor and primary memor is unprotected.

These enhancements are most easily and economically implemented in a dual bus

system configuration, where the existence of only a single bus master makes

interleaving feasible and equipment cost is minimized since only t,,o bus interfaces

are involved. Thus SYSTENI D is strongly preferred over SYSTEM C. In

SYSTEM A and SYSTEM 1i the simple transactions on the exposed bus segment

are strictly control transactions and the increased delay due to CEDC transmission

on the A/DO-31 lines on this segment should not pose a significant performance

problem.

For processor-memory transactions, tie CBIs at primary memory and on the

memory bus connection to the bus coupler each require four cr.lptographic devices

to maintain the maximum transaction rate. Figure 3-6 shows the utiliz ation of the

cryptographic devices, memory and bus lines for a series of six successive simple

secure read transactions. In each three-cycle transaction, 32 bits of address must be
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concealed hb the master so it single dc ice (crvptol) can supply the needed 64 bits

everN six cycles. 1'c sla~c must conceal 32 bits of data and 16 bits of CEDC every

transaction, For a total of 48 bits ceery three cycles (at maximum rate). Two

cr~ plographic devices (oypto2 and cripo3) are used for this task since a single

de ice can gencrate only 64 bits every five cycles. Finally, one crypto device

(cryplol) is required to generate the CLDCs, using two bus cycles in each three-

cycle transaction to perform five of the 16 rounds of the DES. Since this string of

transactions relresents a series of processor-imlemory transactions, the extra buis lines

(CEDCO-15) are employed for CEDC transmission.

If [he traffic an,)3 sis threat is ignored, aldresses need not be encr) pted and 32

fewer bits would hae to bc concealed on each transaction. In this case only three

crypto units are required at the processor and primary memory, i.e., clypiol can be

eliminated. Even if addresses in processor-memory transactions are concealed, it is

quite likely that address concealment may be omitted for control transactions (those

involving the processor and DMA peripherals) since the device register addresses in

these transactions provide very little information to an attacker. Unlike processor-

memory transactions, the frequency of control transactions is fairly low and there

should be enough time between these transactions to allow a single crypto device to

preconipute crypto bit stream between uses (whether or not addresses are concealed

in these transactions). This would free this device for CEDC calculation during

these transactions. Thus TRM-packaged peripherals probably require only one

crypto unit (changing bit stream IDs as required) for simple secure read control

transactions.

3.3.2 Securing simple write Transactions

The detailed security requirements for simple write transactions provide no

opportunities for relaxation, unlike simple read transactions. The contents of the
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Figure 3-6: Timing Diagram for Successive simple secure read Transactions
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r~wI*:'I-I)IRI*ssand lPHlSN'l-l)AIA miust be concealed. [eslave mutst

\elythat these operations aie ordered with respect !o other transactions on the-

con ncuion. and that the addreCss and datd a1re authenltiC and uininodi lied. T'he slave

mti1st pro~ide thle master with a secure ACKNOWLI1I)G verifying the suiccessfuil

comipletion of thle siiiplc secure iwrile. Tlhese requiremients call be achieved using

manyl of' thle same11 techiq~ues developed for secure reads. Stream miode encryption

and decryption are emiployed for concealment and thle same CEI)C technique is

aipplicable here to ensure the authenticity, integrity and ordering for each operation

ini the transaction. Figure 3-7 shows the event graph for the simiple secure write

resulting from an application of these techiniquies.

address data ack

Master

BusT1 TT3-

Slave C

Figure 3-7: Event Graph for a simple secure write
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[he master begins by generating 64 bits of' transmission bit st-alll (('I) fIor

concealing address and data. Tlhe address is encrypted (X 1) using h:dfI '1. tlcse bits

and the result is transmittvd (T1I) using a PRIIISINr- \I)I)lIt.SS. The sla. c rcives

this encrypted address and decrypts it (X3) using the corresponding ptortion of the

slave reception bit stream generated in C2. Back at the master, the data is encrypted

(X2) using the remaining 32 bits fronm the transm-ission bit stream generated in step

C1. The result is transmitted (1'2) using a PIRESENT-I)ATA and deciphered at the

slave (X4). At the master, the address and data are used to calculate a 64-bit CEDC

(El), a portion of which (say 16 bits) is encrypted (X5) using a matching amount of

additional transmission bit stream generated in C3. Ihis CEDC is transmitted to the

slave (T3) where it is deciphered (X6) using the corresponding reception bit stream

generated in C4.

The slave computes a 64-bit CEDC using the received address and data, and the

corresponding bits of this CEDC are compared with the CEDC bits from the master

(= 1). If these bits match, the write, which was begun earlier when both the address

and data became available, is completed and acknowledged. The

ACKNOWLEDGE is secured by encrypting (X7) and transmitting (T4) a different

portion of CEDC generated in step E2. This CEDC is encrypted using slave

transmission bit stream generated in (5'. The master verifies the completion of the

transaction by decrypting (X8) this portion of the CEDC, using the master reception

bit stream from C6, and comparing (=2) it with the corresponding, locally

generated CEDC bits from step El. As in the secure read transaction, the steps

involved in an CEDC comparison can be re-ordered and re-associated, if necessary,

to provide faster operation. Tlhis re-ordering and re-association may be especially

critical at the slave if the CEDC is to be checked and a secure ACKNOWLEDGE

transmitted on the next bus cycle. This transaction offers a number of oppoilunities

for parallelism, as illustrated in Figure 3-8.
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Figure 3-8: Timing Diagram for a simple secure write

Total time for this simple secure write is 37' + T (5 bus cycles), based in the
I e

timing diagram in Figure 3-8, the same as for a simple secure read. (An examination

of the event graph yields a complex symbolic timing formula, involving nested

mininum functions, which simplifies to this expression using the relative timing
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A~SuIII)O1 Mmptions adpederierCI ) TIhe alddreCss anld data, M e (11C ilaatheSLa \ c 111C

s.1me1 points III uimie as in a standard w~rite, hill confirtilathm (it' their -,iiidity Is

de~l~cd b\ m o bus c\cdes, causing an equLal dclaN iii aick no ~ dgmciit lI tie

tiransaction. Again tile secure version of tis transactiloll takes 009/ longer thanil thle

Ntad~i~l~ rsin.As iiilire~eIiiel ie m C inior% access timle. this delisisn\

quite so serious as in the case of' a simple secure read since wirite trainsacflions

t\1I-I pihconIsIttute oiil about 20%-25% of all processor references to memcuory.

\ioreomer, inl systems equipped with a write-th rough cache, processor-generated

1 rite t ransactlolls mal~y be buffered to reduce tile dely aIssociaed with aIccess to

pIrilma r\ mlemnory. (If'.a write-hack cache is emiployed, buaffering of modilied, C\ icted

lineCS redceICs de~ly Onl extended w~rite t ra nsact ionls. 161)

Since a simple secure write takes 66% longer than a standard w~rite, a proportional

in)Icease In l)ulIferinlg at thle cache will maintain existing performance levels in the

11,ice of tis additional delay. (A secure en~ded write exhibits the samne relative

mincease it) delay.) Fokr cacheless systems, single or double hu lfferinlg of' writes Will

al)sorb tis (delay inl most cases. Although additional buiffering can reduce the effect

of the longer transaction time onl effe~ctive memory access timie for the processor, the

transmiission of CEI)Cs during two bus cycles increases buIs utl~iltion and thuIs may

delay other transactions. As with simple secure readl trafisactions, the problem can

be solved by overlapping transmission of CEDCs with address and data

transmlissionl (uising additilonal btis lines for tis purpose). Use of the extra bus lines

and tis him ited tranisaction interleaving enables simple secure write transact ions to

proceed at thle Sa11ie Imaximumi rate its standard mirite t ra nsact1ins. Again these bus

enhancemients are requtiried only flor processor-rnemor\ transactions and thus affect

only SYS'I'IKI Cand SYSTEMKN 1). Using tile same reasoning applied to simple

s'cuire readl trainsact ions, it is apparent that SYSITFAI 1) is pre ferred here.
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Figure 3-9: Timing Diagram for Successive simple secure write Transactions
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For processor-memory transactions, the CBIs at primar) memory and the

memory bus connection to tile bus coupler each require four cryptographic devices

to maintain the maximum transaction rate, the slne number as for a simple secure

read transaction. Figure 3-9 shows the utilization of memory, bus lines and

cryptographic devices Ibr six successive simple secure write transactions. The master

must conceal 64 bits o" address and data and 16 bits of CFDC for each transaction,

whereas the slave must conceal only 16 bits of CEDC. Three crypto devices

(crypiol, crjpto2 and crj)103) are devoted to generating bit stream here, with

CrYp)o3 alternating between transmission and reception bit stream generation. (One

could make the assignment of crypto devices to bit stream generation tasks simpler

by devoting a device exclusively to the slave transmission bit stream, but this would

leave two devices idle nuch of tile tinc.) Again, one cryptographic device (cn'pio4)

is required to calculate CEDCs and these CEDCs are transmitted on the extra bus

lines EDCO-15.

As was the case with simple secure read transactions, if addresses need not be

concealed then one crypto device can be eliminated. Again, even if addresses are

concealed on processor-memory transactions, it seems likely that addresses in

control transactions need not be encrypted. Here too, the frequency of simple

secure write transactions used to control DMA devices should be low enough to

allow a single crypto device to generate the transmission and reception bit streams

between these transactions, freeing the device to generate the CFDC during the

transaction. Thus TRM-packaged peripherals probably require only a single crypto

device to keep pace with simple secure write control transactions.

3.3.3 Secu ring interrupt Transactions

Only one type of simple transaction has yet to be discussed: an interrupt. The

security requirements for an interrupt arc much like those of a simple write, offering
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no Ollforlnt for relaxation. '[e interrupt vector in the the PRI SENT-DATA

must he concealed, and the proceSSor luist VCI'if\' that this operation is properly

ordered, authentic and tumodified. The peripheral generating the interrupt must

ierli\ that the .(KNOWLII)(;E it reckes corresponds to the PRESENT-DATA

just transmitted. 'ThCse requirements are readily achieved using the techniques

developed above fIr simple read and simple write transactions. Figure 310 shows

the ewrit graph for a secure interrupt.

inferrUlt

vector ack

Master

Bus

Slave E

Figure 3-10: Event Graph for a secure interrupt

The master begins by generating transmission crypto bit stream to conceal the

interrupt vector and CEDC (CI). The interrupt vector is enciphered (XI) and

transmitted in a PRESENT-DATA. This vector is input to the CEDC calculation
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I

N A

T C

V K

Master .. ,
El

M-crypto3 
E . - ---

04

M-crypto2
C1

M-cryptol
T! r2 T3

Bus

C2

S-cryptol
03

S-crypto2 I
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S-crypto3 --

Slave - -- -
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Figure 3-1I: Timing Diagram for a secure interrupt

(El) and 16 bits of the result are enciphered (X3) and transmitted (1"2). At the slave

(processor) the interrupt vector and the CEDC are deciphered (X2 and X4) using

the corresponding slave reception bit stream From C2. A CF)C is calculated locally

on the vector ([2) and the corresponding 16 bits are compared with the transmitted

CEDC (= 1). If the two values match, the interrupt is processed (P) and

acknowledged. The acknowledgment is effected by enciphering another 16 bits of

the CEDC (X5) using slave transmission bit stream (C3), and transmitting die result
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as an \('NOWL:I)(,GE (1'3). The master deciphers (he CEDC (X6) using

corresponding master reception bit stream fiom C4, and compares it will] the

corresponding bits of the CF[)C gencirated locally ( =2).

The minimum total time for this transaction is 2T + T (4 bus cycles), based onI C'

the timing diagram in Figure 3-11. Tfhis is twice as long as a standard interrult, but

since these transactions occur so infieqtientl (they are stricly control transactions),

the added delay and extra bus utilization should not significantly affect system

performance. 'Tlie relative infrequency of inlerrtupi transactions, like other control

transactions, ineans that a single crypto probably suffices to generate both crypto bit

streams and to perform the CEDC calculation. LIus the CBIs for peripheral devices

need only one cr pto device to handle secure control transactions.

3.4 Securing Aggregate Transactions

[his section deals with the problem of securing aggregate transfers. If the simple

secure transactions developed in the preceding section were employed for aggregate

transfers without interleaving CEDC transmissions (including additional bus lines),

ntiilization of the general purpose or 1/O bus for these Iransfers Aould increase by

66%. If utilization of this bus is very low, this may be acceptable, but in most cases

this increase will noticeably degrade system performance. Adopting interleaving

and adding extra bus lines to carry CEDCs, as was done for simple secure

transactions, is an expensive proposition in this context. This is due to the number

of devices attached to this bus and to the fact that this bus is not synchronous,

making interleaving more complex. '[le transactions developed in this section avoid

this problem, i.e., they do not significantly increase bus utilization, yet they provide

for secure transfers of aggregates between DMA devices and primary memory.
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3.4.1 A Transfer Protocol for Data Aggregates

The transfer protocol developed here takes advantage of the fact that transfers

between primary memory and these stor:ge devices involve data aggregates larger

than a word, e.g., a disk block or a tape record. Rather than checking the validity of

each word as it is transferred, the authenticity, integrity and ordering of the

aggregate transfer as a whole is checked after the transfer is complete. In this

fashion the data and address in each real or write transaction in an aggregate

transfer is encrypted, but the transaction carries no CFDC and thus bus utilization is

not affected. Only when the transfer is complete is a cumulative CEDC, covering all

of the transferred data and addresses, transmitted for verilication. 'Ehis CEDC

transmission is effected using a simple secure read as developed in the preceding

section.

It might seem that this approach would result in reduced security but a careful

examination of the protocol indicates that it presents an intruder with no new

opportunities for attacks. When a data aggregate is transferred to primary memory

from a storage device, the processor does not access any portion of the aggregate

until the storage device signals that the transfer is complete and verified. As long as

the unverified data is stored only in the locations that are destined to be overwritten

anyway, no real harm results from transferring data aggregates in this fashion.

Address filtering of these unverified writes at the slave, iestricting them to the

region(s) of primary memory which are current largets of such transfers, provides

the necessary control. Note that the term slave is used here (rather than primary

memory) since the filtering and other security functions can be performed at various

points depending on system configuration. In SYSTE'M A and SYSTEN B these

functions are provided by the CHI in li,! main TRM and in S'lSTIM I1) either the

primary memory CBI or the bus coupler CBI (at the I/0 bus interfIace) could

perform these tasks.
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In imsfcr ri, dat algregates rloml primar menmor\ to storage devices a similar

'1-lllli t applies. Some stoThwg dc\ices btifler the aggregate until the transfei is

womplete, since the ratc of I ri\ tl of kords arics depending on btis traffic and may

lot h c \tl hroni/ed Io the device transl'cr rate. I n this case the aggregate can be

checked belOre it is \\I itten ol the non-volatile media. Even if the data is written on

the mcdia before the transfcr is complete (as in a non-buffered device), no harm will

result so long as it is possible to identify unverified aggregates on the media.

Incomplete transfers to these devices sonietimes occur under normal (non-

nial iciots) circumstances due to transmission timing problems. Storage devices

(buffered and nol-buffiered) record an FDC wilh each aggregatc to detect these and

other errors. It an incomplete tr:nsfer occurs or an error is detected by the

cumulative CFI)C, the FI)C on the media can be set to an error \alue as a positive

ilication of timerified dala. Since storage devices act as bus masters, there is no

need for address filtering here, unlike primary memory.

h'uItIS aggregate transfers to and From prillla Ileilory are efficiently and securely

implemented using t o types of transactions: simpIe secure transactions to control

the transfer, and aggregate secure transactions to transfer the data. [he general

procedure, for transfers in both directions, is as follows. First, if the transfer is

directed to primary nemors, the processor identifies the range of the transfer at the

slave, i.e., establishes the upper and lower bounds for primary memor) references,

and resets the slave cumulalihe CEDC register. Next, the processor establishes the

transfer parameters at the storage device, e.g., the starting addresses at source and

destination and the amnount of data to be transferred, using simple secure control

transactions. [he storage device then carries out the transfer using aggregate secure

transactions.

As each word is transferred, the cumulative CEDC is accumulated at both the

storage device and at the slave. When the transfer is complete, the storage device

134



An Fncrpied Bus Approach

reads the sla e control register containing the accum ulated C'Fl( (using a simple

secure read). In the case of a transfer to memor,, this control transaction must set a

flag at the slae to pre ent liurither dala transfers on this connection until the CFI)C

register is reset for the next transfer. This value is compared to the CEDC

accumulated at the storage device, and the status register at the storage de% ice is set

accordingly. (The EDC on the non-volatile media is 'oided if the comparison fails

or if ai incomplete transfer error occurs.) The storage device sends a secure

interrupt to the processor when this procedure is complete and the processor

retrieves the contents of the device status register using a simple secure read.

Readers who are not interested in the details of securing aggregate transfers

should now skip to section 3.7 (page 154) for a summary of the highlights and a

review of the conclusions reached in this chapter.

3.4.2 Securing aggregate read and aggregate write Tiansactions

The event graphs and timing diagrams for an aggregate secure read and an

aggregate secure write are shown in Figures 3-12, 3-13, 3-14, and 3-15. The

encryption/decryption mode and cryptographic error detection techniques

employed here are essentially the same as those used in simple secure transactions.

The CEDC calculation must be made cumulL1lativc in a fashion that not only detects

modification of individual words btit also detects positional changes (reordering) of

wards in the data aggregate. "The method adopted here is to chain the CEDC

ca!culations by adding the output of the ith CFDC calculation to the input of the
i+ s CEDC calculation. This is essentially CBC mode encryption (using a

shortened DES) applied to the CEDCs.

In an aggregate secure read, die master begins by generating transmission

cryptographic bit stream (CI) in the usual fashion. The address in the PRESENT-
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address data

Master E2

Bus

Slave

Figure 3-12: Event Graph for an aggregate secure read

ADI)RESS is enciphered using 32 bits of that bit stream (X 1) and transmitted (TI).

The slave deciphers the address (X2) using a corresponding portion of the slave

reception bit stream generated in C2. The appropriate word is retrieved (A),

enciphered (X2) using 32 bits of slave transmission bit stream (C3), and transmitted

(T2) in a PRESENT-DATA. Tlle data is also added to the cUnulative CEDC (X4)

and a new running CEDC is calculated on the result (El). At the master, the data is

deciphered (X5) using corresponding bits from the master reception bit stream (C4),

and is made available both for storage and for calculation of a new cumulative

CEDC value (X6 and E2). Figure 3-12 illustrates these processing steps.

An aggregate secure write proceeds in much the same fashion. The address in the

PIESENT-ADDRESS and the data in the PRESENT-DATA are enciphered (XI
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address data ack

Master 
X .

Bus T

Slave E E

Figure 3-14: Event Graph for an aggregate secure write

The minimum time for both transactions is 2T + 7' (three bus cycles), the same
I a

as for comparable standard transactions, as indicated in Figures 3-13 and 3-15. Note

that the CEDC calculation is performed on 64-bit inputs, so it is Cxecuted only once

fbr every two transactions. Since the maximum transfer rate for secondary and T&A

storage devices ranges from about 1-15 Mbits/s, a single crypto unit probably

suffices to generate both the crypto bit stream and to calculate the cumulative

CEDC. As it was noted in section 3.3 that a single crypto device is probably

sufficient to secure control transactions, this analysis suggests that the CBls for

TRM-packaged secondary and T&A storage require but one crypto device to handle

both types of transactions.

This aggregate secure transfer protocol requires an additional two to four control

transactions: one to transfer the cumulative CEDC, one to reset the CEDC register

at the slave and, in the case of transfers to primary memory, two transactions to
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Figure 3-15: Timing Diagram for an aggregate secure write

establish the boundi ol the transfer. An aggregate transfer in a standard system

requires one transaction for every word transferred plus five control transactions (as

detailed earlier). Thlus, in a typical 512-byte transfer, the additional bus cycles

reCquired by extra control transactions to secure the transfer constituite a negligible

(1.5-3%) increase in bus uItilizationl for DMA transfers. Moreover, tile total timle for

stich transiiers is not noticeably increased ((1%) since the extra control transactions

require (only a few microseconds whereas a 512-byte transfer takes onl the order of

500!Ls at 8 Mbits/s.
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3.5 Additional CBI Design Considerations

The crx ptlographic techniques employ'ed for aggregate secure and simple secure

tran.,Ictlions emplo,, a different bit stream ID for each simplex channel, ensuring

that the generated bit streams are distinct. In a computer system consisting of n

I'R\I-packaged (DMA) storage devices, there are logically 2n connections: one

betxcen each of these devices and the processor (for control purposes) and one

betxmeen each of these devices and primary memory (for data transfer). '[his yields

4n bit streams, two for each connection! However, it is possible to combine the

control connection and the data transfer connection lbr each DMA peripheral

device into a single connection if both connections are managed by a single C131 at

each end (to synchronize use of the bit streams). Combining these connection pairs

halhcs the number of distinct bit streams that must be generated, making the CBIs at

these devices somewhat simpler and less costly.

Combining the control and transfier connections for each device fits naturally in

SYSTEM A and SYSTE 1 B where the CBI on the main TRM provides the only

path to both processor and primary memory for storage devices. In SYSTEM C this

simplification cannot be effected since the CBIs for primary memory and die

processor are distinct in this configuration. However, S'sTNM C effectively was

eliminated from consideration earlier because of the cost of interleaving CEDC

transmission for processor-memory transactions. In SYSTEM D, the CBI at the

interface to the I/O bus can act as the secure interface to both processor and

primary memory for these storage devices in support of combined control/transfer

connections. This approach yields single-connection CBIs for secure storage

devices, primary memory and the bus coupler interface to the memory bus. Only

one multi-connection CBI is needed in these designs, the CBI at the bus coupler

interface to the I/O bus.
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Irrespective of the choice of combined or separate control and data connections,

the above-noted design for SYSTEM D is preferred over one in which the primary

memory CBI is the termination point for the storage device data transfer

connections. The reasoning here is that the primary memory CBI is fairly complex

due to the high transaction rate which it must support. If this CBI had to deal with

aggregate transactions from several storage devices and simple transactions from the

processor, the bus interface would become even more complex. Thus the preferred

design for SYSTEM D involves terminating each storage device data transfer

connection at the main TRM. Adopting this design, the bus coupler CBI at the I/O

bus interface becomes the slave CBI in aggregate transflrs, and thus it contains the

CEDC accumulation register and a pair of bounds registers to restrict access on

aggregate secure ivrite transactions. Note that these registers are associated with

only one transfer at a time so several sets of registers are required to support

multiple, simultaneous aggregate transfers.

llis is a convenient arrangement since the processor control transa.tions that

manipulate the bounds registers (to establish the range of transfers) do not actually

go out on the bus and thus need not be encrypted. Under this arrangement,

aggregate transactions are managed at the bus coupler and transformed into simple

secure transactions on the memory bus, thus simplifying the primary memory CBI.

(In cache-equipped systems configured as SYSTEM D, aggregate transfers may

store into or fetch from the cache, so these transactions must be decrypted and

processed at the bus coupler anyway.) Since the cumulative CEDC detects

modification only between the master CBI and the slave CBI, i.e., only on the 1/0

bus in this design, it is essential that simple secure transactions are used to transport

this data on the memory bus.

Using this design, the transfer of a data aggregate between a secure storage device

and primary memory involves three distinct phases: transfer on the I/0 bus using

aggregate secure transactions, buffering in the bus coupler and transfer on the
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W1lory biu" usin~g sim1ple sceure transaclions. On riansfe-s to memory from the 1/0

bus, a Small11 (two 01r thrl-C word) bui Ter is uisually provided to accoLUnt for the

-is) riclroilous operation of the two busses. IF such a buffer were not) provided, the

time bor a store to memory from a device onl thle I/O bus could double or triple

waiting For tfie memnory bus to bcconie available and for an acknowledgment from

mlemnory. In the context of an aggregate secure write to miemory, if this buffer is

expanded by one word, thie (noti-secure) ACK(NOWLEKDGE o11 the 1/0 bus can be

issuied before thle simpiile secure write is completed oil thle memI~ory bus, i.e., the

transactions on tile two buIsses call be overlapped.

Onl ti-ansfers R~om memiory to devices onl thle I/O bus, data is uisually pre- tetchcd

From niemory into small (one or twvo word) bufflers, onle per DMA device. If this

pre- fetching were not pro~ ided, the time for a fetch from memory by a device on

thle I/O buIs could double or triple, just as for stores by these devices. I n the case of

,in aggwregate secure read, the size of these buffers need not be increased, even

though a simple secure read encounters a two-cycle delay before the authenticity,

integrity and timeliness ol tie transmitted data is verified. Instead, the prefetch can

begin two cycles earlier than in a standard systemu so that the requested word is

available and checked before the aggregate transaction takes place. If tile same

precfetch time were employed, the data from primary mnemory might ilot be checked

before it was transmitted onl the 1/O bus and thuLs the entire transfer would have to

be aborted if the check on tile word failed. Earlier prefetching is readily

accomplishied by the bus coupler given thle relatively low transfer rates of storage

devices on the 1/0 bus. To avoid pre-fetching past the end of the data to be

transferred, one can use the bounds registers provided for aggregate secure write

transactions to delimit tile range of the transfer on aggregate secure read

transuctions.
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One final design requirement that arises in ali s.ystem conhlgurations is the need

for CBIs on the general purpose or I/0 bus to be able to determine when

transactions are directed to" ard them. This is a problem here because all addresses

ir secure transactions are encrypted and can only be decrypted using the proper

crypto bitstream. (Of course, if the system designer elects not to encrypt addresses

this problem vanishes.) It is conceivable that a CBI attempting to decrypt an

address using the wrong crypto bit stream A ill yield a alue that matches an address

at the C1I. The multi-connection CBI at the bus coupler would be further

complicated if it had to check the address in each transaction to determine the

connection with which it was associated. 'There are dual prol)lems here: secure

storage device Clils need to know whether they are the ilargel of a transaction

whereas, the main TRM CBI (on the I/0 or general purpose bus) needs to know the

source of a transaction. Note that the problem is symmetric but not identical for the

main TRM and for storage devices. Based on the data flow patterns encountered in

these systems, if the main TRM is not the source of a transaction it must be the

target, and if a device is the target, then the main TRM must be the source.

If the arbitration procedure on the 1/0 or general purpose bus explicitly

identifies the next transmitter (the next source), then the second problem is solved,

i.e., the source of each transaction is identified for the main TRM CBI. Moreover,

using this information, the storage device Cils know they aire not the target of a

transaction if the source is not the main TRM. The only remaining problem is

identifying the target of control transactions issued by the TRM. If the addresses in

these control transactions arc not encrypted, the target is clearly identified and no

confusion results. In most applications, this will not be regarded its a serious breach

of security, as noted earlier, since only the addresses of control registers are involved

and these provide liltle traffic analysis information. If the arbit'ation procedure

does not identify the next transmitter, the CBIs on the I/O bus can generate this

information and transmit it using some additional bus lines. About two or three

additional bus lines should suffice for this purpose.
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3.6 System Integration Issues

'The preceding sections dealt with lhe problems of" securing coinmtinication

inv(k Ing tie processor, prim ary memor and s condar and T&A storage devices.

Although these problems are ccnt r!l to thle design of'computer systems that achieve

tile sCcurityv iCquiremCnts Mitlin.d in section 3.2, some additional problems must be

be addressed to complete the design. For example, there also has been no

discussion of 110\% to interface non-secuiC devices to the I/O bus so that they can

confflUnicalc with the processor and, in the case of DMA devices, with primary

memory. System initialization procedures, responses to possible security violations

and ci orcing reloading constraints associated with archi'al storage are all topics

requiring flrther attention. The remainder of this chapter deals with each of these

topics in turn.

3.6.1 Interfacing Non-Secure Devices on the I/O Bus

lie non-secure devices attached to the general purpose or I/O bus fall into two

classes: interrupt driven and DMA. Interrupt driven devices interface only with the

processor, generating interrupt transactions and acting as the target of read and write

transactions to device control registers. DMA devices exhibit the same processor

interface requirements and further require a nieans of transferring data aggregates

to and from primary memory. Secure and non-secure devices must co-exist on the

general purpose or I/0 bus without either being confused by the addresses

transmitted by the other. In solving these interface problems it is most desirable to

avoid approaches that entail modifying the bus interfaces for non-secure devices.

This is an important consideration since there may be a number of these devices on

the 1/0 bus, and system cost might increase significantly if off-the-shelf versions of

these devices cannot be employed.
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First consider the problem of transmitting both cIIcr, ,lted and clear addresses on

the general purpose or I/0 bus. Since the bit pattern that results from encryptilng

an address is unpredictable, it is conceivable that some encrypted addresses will

match tile bus addresses of non-secure devices and, conversely, that elear addresses

could be decrj pied by secure devices to yield spurious bus addresses. In section 3.5,

two solutions were presented for resolving an analogous problcm resulting from the

amlbiguities presented by encrypted addresses used on different connections. One

solution, the use of extra I/O bus lines to idcntif the transmitter and destination of

bus transactions would solve the current problem as well, but this would violate the

goal of not modifying the bus intcrIccs of noll-SecuLe devices. 1he other solution,

based on using clear addresses in control transactions and an arbitration scheme that

identifies the transmitter, also requires that bus interfaces (other than the processor)

know not to perform address recognition except when the processor is the

transmitter.

To avoid any modification of non-secure bus interfaces, the strategy proposed for

bus address assignments in the monolithic TRM design is adopted here. 111' high

order bit of addresses will be used to distinguish between secure and non-secure

device addresses and this bit will not be encrypted in any, operations on the general

purpose or I/O bus. This bit partitions the bus address space between secure and

non-secure devices, so neither type of devicc will be confused and no modifications

to non-secure device bus interfiaces are required. Since this address bit merely

identifies which type of device is being addressed, any traffic analysis information

gleaned from examination of this bit would be readily available in any case. Note

that this bus address assignment strategy does not interfere with use of either of the

previously mentioned solutions to the encrypted address ambiguity problem as it

exists among secure devices.
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Using this address assignment scheme, interfacing non-secuIe interrupt driven

de\ices becomes fairly simple. These devices generate stadard interrupt

transactions and the processor controls the devices using standard read and standard

wrile transactions. The lct that the high order bus address bit distinguishes

etciien non-secure and secure devices means that the processor implicitly indicates

to its CI Miether or not a transaction should be encrypted. In the case of stores by

non-secure DMA de.ices, there is a need for address filtering to restrict access to

designated memory locations. This is accomplished using pairs of bounds registers,

as proposed earlier for the secure bus coupler (SBC) in the monolithic TRM design.

ilie processor must establish the range of memory locations to be accessed by non-

secure )MA devices and indicate the allowed modes of access (fetch and/or store)

before transfers can proceed. If an arbitration mechanism is employed that

identifies the transmitter, the appropriate pair of bounds registers is trivially

selected, otherwise an associative search (based on the address in the transaction)

may be required.

3.6.2 System Initialization

In the preceding sections, secure operation of the computer system has been

described in a sicady-siate context. When tile computer system is powered up or

otherwise periodically initialized, it is necessary to establish the context for secure,

steady-state operation. The purpose of this initialization procedure is the

establishment of secure connections between the main TRM and the other (slave)

TRMs in the system. The requirements for secure connection initiation here are the

same as in general purpose communication environments, i.e., the authenticity and

the time-integrity of each connection must be established. The methods for

achieving these requirements are somewhat simpler here due to the fixed

connectivity patterns of the TRMs and due to the fact that there is no mutual
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suspicion among the "'RMs. The initialization pfocedu inLI olncs distribution of a

working key by the main TRM followed by a challenge-response protocol to verify

the authenticity and time-integrity of the connection.

Each slave TRM contains three non-volatile control registers for security

purposes: one contains the master key of the TRNI, one holds a bit pattLrn used in

the challenge-response protocol and one records the bit stream I1) pair used by the

'[RM in communicating with the main TRM. One volatile register, to hold a

working key, is also included in each slave TRM. The rgisters containing the

master key and the challenge-response value are both loaded at the tinie of

manti facture, and the master-key register is never changed. I lohe\cr, the registers

conltaining the challenge value and the bit stream II)s are modified each time the

TRIM is reset (using tile bus RESET line). I lie main TRM contains a collection of

non-volatile registers, including one for its master key, a counter for generating

working keys and a set of registers to hold the master keys and bit stream IDs for the

slave TRMs configured in the system. "1'ie master keys of slave TRMs are loaded

into the main TRM using a procedure described in section 3.6.4. The main TRM

generates new working keys by incrementing its non-volatile counter and encrypting

(using FCB mode) the result under its master key, generating a distinct,

unpredictable working key each time. System initialization proceeds as follows.

First, the main TRM generates a new working key as described above. Next, for

each slave TRM in turn, the main TRM raises the RESET line while asserting the

bus address of the TRM being initialized, clearing all volatile registers in (hat slave

TRM. The main TRM then enciphers the working key Under the slave TRM master

key (using ECB mode) and transmits the result to slave TRM control registers using

two standard write transactions. The slave TRM receives the working key, deciphers

it (using the slave TRM master key) and loads the result into its (volatile) working-

key register. Next, the master TRM uses a standard write to store the assigned bit

147



An Fncr pted Buis Approach

NtI can II pai to the shine] I'M\~. Thle inaster 'IRMN chooses 1hese I~s So that each

Slav e iR IISC use aI iCrent pair to communicate with the miain IRM. Thle master

FRN ASO also0toeS theCSC Utics (Working key and it stream I Ds) into thle CBI
rco'istcrs it associated Oji the slave JR NI being initialized.

Using its master key, the slixe encrypts the contents of Its challenge-vale

rei-,,stem, >iliga ne challenge %,lkue. The counIter-(s) used to generate crypto bit

stiamn are initialliCd alpropriately, i.e., the counter For a single cry pto device C131 is

Set to /, and if n cr~ pto devices are used, their couinters are set to the values /

through ni. "I'le slave IRM then generates a secure iterrupt, uIsing the1 new working

key and the assigned hit stream I Is, indicating that it Is prepared to carr)' out the

chaflenge-response protocol. T'he main TRM jesponds by reading the challenge-

value register and theni writing back the value, using simple secure transactions. The

ability of the slave to generate a valid secure interrupt using the new working key

~ernies the authenticity and timie-integrity of the connection to thle inII TRM',

MIhe-eaS thle successful reading and writing of the chiallenge-value register does the

same fior the slave TRM. When this procedure' has been carried out for all slave

HZ Ms, the system is initialized for secure inter-TR M comimunication.

3.6.3 Response to Potential Security Violations

'l1w CRls and the TRM operating system detect pozential Security violations in

two ways: through mismatches between calculated and received CEDCs and

through tinleouitS. Fitch time a violation is detected at the main TRM, a nion-volatile

violaiion counier is incremented to record the occurrence. This type of' threat

monitoring is used to detect attemipts by an attacker to subvert the protection

mechanisms by repeated trials. A threshold is established by the vendor and, if' that

threshold is exceeded, thle processor will Shut down (refuse to execute external

software for the client) until the vendor intervenes. This intervention may involve
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'1n I nspctiOnl of' tilcesvstcmh of thle xCldoi, or it lill\ sillplN

FCLI1I* Iii1 Wil IItIt' cor i Wi l ltonl So that thle v'C ndor IS Opp tilse o repeated
c Trs he min TIR Mi may be reset bN cngagin igsomne 110i l ()F (IM b gi V t h

\ell or. analogous lo IthIe s~ stemIII i I MlI i/a lionl p RoKCdC du e scihcd above.

'Violations arc (ltctcd at thle bIs ma1 sIer and at thle Sla'C (Ic. pend il thle t~jpc

ortransactilul and thle typc orf jlation. 111C \ oiotu'II IIIZma\ CSLi It fi )ifl (IInSIII isSion

error1S Onl tile NIS (aCCIdCnII01 OF 1 INcioUs). hOS )s f crI~ ph grjapl ic bit St ream

s\ nchron\ bcet\\ ccicomm nLicating Cl3ils or becauise of a tr-ansient or "hard" dev ice

iailinction. A Sim ple parfi\ ChCk IS LtSCd to dICeCt non-in1 111 iciI CIn F ero InI data.

atddresses (I- initerruptI \ Ccior, onl bus ope rations (hr hn iics PA RITNO f-3). and it Is

C'.jicclb tat (lls Code Ill catch most Sliuc erors. If a hius opc rat lonl fmils thli on-

sccuI' rc eror dIctCCtionl code tcst, tilc opera"tionl is ret tal ustli ittcd an Itolmnaticalk' and thle

\ iolatll ion cte is Nol inicrenlIe ntc. (ThIiis operation 1ii ulims~~sion ises a hti kred

\,Itil of, thek operation aiid should not1 be coI II'sCLd with thle Iran~viciion rcirY

described belo\ .) Oil)) those "errors" dticcmtd b\ the CFDC or h\ a timelout. are

ir'CateI aIs attenllptCdI scuiI'ty violationls. The appr q'rieale response to a \ jolation

decpends onl the type (if \~ iolation. tile t\ pc of' transaction amid hehcir the sla e of

master detects the violation,

First consider CFDC mismatches. Ini thle caLsc of ai simple secure read, tis type of

iolation is detected at the miaster CBI1 and the r-espomise is to zatcmpt the transaction

aialn, trcaling itai e rnsaction from thc standp)oint Of tile SccIrivncst -s

IS 11Cs nwcrypt)ographlic bit stream is generatedl For tie rectirtcd transaction. Ini thle

case or a simple secure write or a secure interrupt, thle violation is detected at the

slave and the response is to ignore thle transaction, allowing thle mlaster to tiiiieott

waiting (Or tile A(K kNOWL E IGF. Fo~r aggregule securc transfers (stores atnd

fitches), the [)MA storage device deterMIes if tiecl aie CFI)l'IIV EC cheek fails,

and the operating s~ stei discovers the violation when it fectches thle control register
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front this dev ice. The operating system, upon detecting this condition, increments

the x iolation counter and may retr) the aggregate transfer.

Next consider the response to timeouts. In the case of a simple secure read, a

timeout occLrs at the master CBI when either the data or the CHIC fails to arrive.

The response is to discard any cr\ptographic bit stream generated for this

transaction and retry the transaction, treating it as a new transaction. In the case of a

simple secure i rite or a secure interrupt, a timeout can occur at either master or

slave CBI, e.g., while waiting for the CEDC or the .(KNOWIIDGE. If the slave

experiences the timeout, it ignores the transaction and discards any cr ptographic

bit stream for the transaction. If no ACK NOWL CI)GE is recei'ed, the master will

timeout, so all timeouts on these transactions are translated into timeouts at the

master. The master discards the cryptographic bit stream associated with this

transaction and retries it. In the case of aggregate transactions (fetches or stores),

timeouts are handled as above, noting that the cumiurlative CEI)C is not updated on

the retry.

If the retry fails in an) of these cases, it is necessary fbr the operat:,,g system to

handle the situation. In the case of simple secure transactions, the proccssor is the

master and will detect tie problem when the retry fails. The processor readily

detects failed secure interrupt transactions as well. In the case of aggregate secure

transactions, the secure storage device will send a secure interrupt to the processor to

signal the error. Either way the operating system is easily notified of the problem.

The only recourse for the processor is to reset and reinitialize the device

(establishing a new bit stream ID for the CBI) to rectify possible cryptographic bit

stream synchrony problems or to detect an inoperative device (identified by its lack

of response to the initialization procedure). If this procedure succeeds it may be

possible to recover from the point at vhich the failure occurred. (An aggregate

transfer would have to be retried in its entirety.) If the procedure fails it is time to

call the vendor.
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3.6.4 Distributing TRMs and External Software

TRN distribution arises in two contexts: distribution of external software by

TR M-packaged transfer storage and additions of l1RM-packaged devices to systems.

The same hardware distribution procedure is emplo)ed in both contexts. The

\endor maintains a database that contains the serial number, master key, and initial

challenge-response value fbr each 1'RM he has manu factured. Gi en the serial

nuimber ol'a slave 'RM to be added to a system and the serial nUnber of the main

'1RM INo that s stem, the vendor can use this database to generate a bit string that is

entered into the main TRM of the system in question (via a terminal). This bit

string consists o the initial challCnge-response valuC and the master key Imr the

slave FRM being sold, both encrypted under the master key of the main TRM

(using PCBC mode). When a client purchases a 'l'RM-packaged de ice to add to his

system, the local vendor iepresentative contacts the vendor computer that maintains

the database described above, transmits the requisite serial numbers and receives

this bit string in response. In this fashion a main TRM acquires master keys for

slave TRMs. This method does not impose long delays as the factory customizes

TRMs for specific systems nor does it require trust in the local vendor

representative!

Physical transfer storage may not be implemented in the encrypted bus approach

because of the high cost of TRM packaging for demountable storage media.

Instead, external software will most likely be distributed via a communication

network as described in section 2.3.4. However, one can dcvelop mechanisms for

distributing external software via transfer storage media. 'Ilese mechanisms are not

directly related to the encrypted bus techniques developed in this chapter biut rather

tre based largely on operating s stem conventions. For transfer storage, there is a

requirement that related files (transfer tnits) on this media be loaded into the file

system on secondary storage together and that the operating system be able to
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distingulish between \cndor-supplied (external) software and client-written software.

Moreow'cr, since the client may use transfler media as archival storage 1br external

software, any reloading constraints associated with files in transfer units must be

checked when loading these units into the file system.

'11e 1ldlowing operating system mechanisms achieve these requirements. All

TRM-packaged, deIoMuntable storage media must contain at header (not accessible

bN client I/0 operations) that identifies the type of storage on the media (secondary,

tiansler or archival). '11w operating system checks this header when the media is

Inotinted, preventing any confision as to what type of iles are contained on the

media. Each transfer unit is recorded as a, file consisting ofa table ofcontents and a

list of any non-reloadable files contained in the unit followed b. the iles that make

up the transt'er unit. Thle operating system loads all of the component files of a

transfer unit into the file system together, deleting any existing copies of these files.

(Existing copies of these files are deleted to ensure the consistenc) of the transfer

tunit in the tile system, i.e., to prevent mixing of files from old and new releases of

external software.) T'he only exception is that any non-reloadable files in the tnit

arc not loaded if they exist or if they have existed previousl (as explained in the

next section). These mechanisms are quite similar to those employed in the

encrypted storage approach for securing transfer storage (see section 4.3).

3.6.5 Secure Archival Storage Reloading Constraints

In section 2.1 three classes of files were distinguished with respect to the

constraints placed on reloading these files from secure archival storage into the file

system on secure secondary storage. A client may be free to reload any copy ofa file

(unconstrained), he may be allowed to reload only the most recent archived copy of

the ile (most-recent-only) or the file may be declared non-reloadable. There also

may be a requirement that reloadable files be grouped into archival units, so that all
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of these files are reloaded together. Archival storage is presumed to be

demountable and, as with transfer storage, it is not clear if demot ntable media can

be TRM-packaged in an economically feasible fashion. Thus the problem of

enforcing reloading constraints may never arise in systems based on the encrypted

bus approach. However, one can outline a method of enforcing these constraints in

the context of such systems. 'he method proposed here, like the one described

above for transfer storage, is based on operating system conventions for saving and

reloading files fi-om archival storage. These conventions depend on the

maintenance of a table that identifies non-reloadable files and that lists the name

and the time and date of the most recent copy of' files archived with that reloading

constraint.

All files on archival storage are represented as archival units using the same type

of format as transfer units, i.e., a table of contents of the files contained in the unit,

the reloading constraint associated with these files and the time and date the unit

was written. (All of the files in an archival unit share the same reloading constraint.)

The operating system provides a mechanism by which external softwarc can direct

(automatically or in response to a client request) one or more files to be saved as an

archival unit along with the reloading constraint for the unit. The operating system

also maintains a directory on each archival storage volume for locating files in

archival units on that volume. A request to reload a file causes all of the files in the

unit to be reloaded, subject to the reloading constraint associated with the unit.

Non-reloadable files are so marked on secondary storage by the operating system

and thus are not subject to archiving.

The operating system maintains a table on (non-demountable) secondary storage

identifying all non-reloadable files and listing the time and date when the last

archival unit containing each file with the most-recent-only reloading attribute was

written. Ibis table is consulted when a unit with the most-recent-only constraint is
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rCloaded, when transfer inits containing non-reloadable files are loaded or when

external software requests creation of a non-reloadable file. If this table is

destroyed, no files with the most-recent-only reloading constraint can be reloaded

and no non-reloadable file can be created oi loaded from transfer units. 11us this

table must be maintained in a highly reliable fashion. Section 4.3.4 describes

techniqUes for ensuring the robustness of an equivalent table used for the same

pLrpose in the encrypted storage approach and these techniques are applicable here.

The interested reader is referred to that section for fuirther details.

3.7 Conclusions

The techniques developed in this chapter enable a computer system constructed

from two or more 'FRM-packaged pieces to protect external software from

disclosure and Undetected modification. Several important techniques were

introduced in this chapter. 'lhe stream cipher mode employed here is specially

designed to minimize delay and maximize throu~ghpLt. In particular, this mode

permits multiple crypto devices to be used in parallel to generate crypto bit stream

at very high rates. ilie shortened DES calculation employed for CEDCs enables

simple secure transactions to proceed at relatively high rates. Use of a distinct crypto

bit stream for each simplex channel supports asynchrony in secure transaction

scenarios. This is critical to the elimination of authentication checks at the slave

during simple secure read transactions (enhancing throughput) and it allows control

and data transfer connections to be combined. Finally, aggregate secure transactions

reduce overhead on data transfers between primary memory and TRM-packaged

storage devices by transmitting a cumulative CFDC at the completion of the

transfer, rather than transmitting a CEDC with each transaction.

154



An Encrypted Bus Approach

'11 only weakness of the designs presented in this chaptcr arises frol the limited

traffic analysis that can be carried out on exposed portions of the bus. "lhe amount

of information that is released in this fashion depends on the choice of

configuration, but it is \ery small in most cases anyway. In SYSTEM A and

SYSTEM 11 tile impact of the protection measures on system performance is

negligible and the cost of the required CBIs should be acceptably small. For

systems in which primary memory is independently packaged. the performance

impact of these measures is greater, but this impact can be minimized through

appropriate configuration choices, e.g., a cache-equipped, dual-bus design. Thus

S'STEM D is preferred over S'STEI C since the dual-bus design minimizes the

cost of proposed bus enhancements and yields simplicr CBIs. However, the

processor and memory CBIs in both systems may be expensive, due largely to the

number of cryptographic devices required.

Demountable media could be developed for these designs, but it is not clear if

such media would be economically feasible to produce, since both the media and its

access hardware must be packaged together. Thus distribution of external sftware

is best accomplished through secure communication techniques as described in

section 2.3.4 and demountable secondary or archival storage options may be limited

or non-existent. The encrypted bus designs offer greater flexibility than the

monolithic TRM design, but the cost of' TRM packaging, including CBIs, may

preclude the configurations that offer the greatest flexibility, e.g., SYSTIM 1). "lle

encrypted bus approach is highly transparent, i.e., there is little or no impact on

most external software and very little software is devoted to managing the protection

mechanisms. By adopting appropriate conventions for assignment of buts addresses,

CBIs can determine if a transaction should be repeated outside the TRM and, if it is

repeated, whether it must be encrypted.
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Chapter Four

An Encrypted Storage Approach

to Protecting External Software

I'his chapter explores in detail an approach to securing external software based on

the use of cryptographic and protocol techniques to protect data stored outside a

IRM (using physically unprotected media and devices). In this approach, a

processor and some of the lower levels of the storage hierarchy are enclosed in a

single TRM and all data in higher levels of storage (outside of the IRM) are

protected by being encrypted and by the use of appropriate protocols. This design

approach allows significant use of off-the-shelf equipment since the storage and

transmission of encrypted data is generally transparent to the devices and the

bus(es). Special equipment is required only at the point where data must be

cryptographically transformed, i.e., at the TRM boundary. These transfrormations

are effccted by a secure slorage inierface (SSI) that provides encryption, decryp:ion

and error checking services.

1'he boundary between the TRM and physically unprotected storage occurs at

one of three points, as illustrated in Figures 4-1 and 4-2. In SYSTEM E only

transfer and archival storage is outside the TRM, whereas in SYSTEM F secondary

memory is also physically unprotected and in SYS'ITEM G and SYS''EM !! even

data in primary memory is subject to intruder attack. These four system

configurations correspond directly to those presented at the beginning of Chapter 3.

Here too the organization of the processor and primary memory (dual or single bus

system, cache or cacheless processor) are irrelevant in the first two systems (E and
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F). In the latter to\ systcms ((, and I1) the choice of' a single or d ul hu

arrangement and a cache or cacheles, processor is critical.

SCPU S

PEMh 7-EM A other peripherals

System E

CPU S _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

EP-IEM] S-MM* Tother peripherals

System F

Figure 4-I: Two System Configurations Em)loying a IRM and an SSI
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As in Chapter 3, Successive configurations decrease the nlmber of devices

contained within a TRM, increasing flexibility by allowing more options in

equipment selection and greater opportunity fbr s,tenm change both ibr growth and

maintenance. Here, since only one TRM is emploed, these configurations allow

hlr even greater flexibility since devices outside the TRM are ofl-the-shelf. ]liese

designs make practical the use of conventional media for T&A storage and

dcmot ntable secondary slorage, overcoming a serious limitation of the encrypted

bus designs. Moreover, these designs use fewer TRMs and encryption chips, thus

reducing overall system cost as compared with the encrypted bus approach. These

improvements are not "ithout attendant costs. The encrypted storage approach

requires explicit software control by external software or operating systems to

manage databases that are part of the protection mechanisms. These databases

decrease available storage at each level in the hierarchy and require maintenance

activities that involve additional transfers among levels in the storage hierarchies

(resulting in processing delays and decreased bus availability).

4.1 Security Requirements in the Encrypted Storage

Approach

The two major aspects of protecting external software, preventing release of and

detecting modification of information, translate into several specific requirements in

the context of encrypted storage designs. In this context storage devices and bus

segments outside the TRM are subject to physical attack by an intruder and the

semantics of secure operation are somewhat different from those encountered in the

encrypted bus environment. Thus, instead of defining secure system (,pcration in

terms of individual bus transactions, here system security is defined in terms of

reading and writing of storage units, encrypted collections of data that are

independently protected. This higher level specification of security requirements

encompasses attacks launched against vulnerable bus segments and storage devices.
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Figure 4-3 shows the simple model used to discuss intruder attacks and security

requirements 16r encryptcd storage designs. lhis model applics to all four

configurations sho'n in -igures 4-1 and 4-2. Only two operations, Read and Write,

are included in this model. These operations transfer storage units across the

boundary hetween protected storage in the TRM and unprotected storage outside

the IRM. Note that se'eral bus transactions are usually required to effect these

higher lecl operations, e.g., tlransfCr o'a disk sector between primary and secondaiy

memory in\olves control transactions and a number of read or write transactions to

effect a storage unit Read or Write. Each operation involves two values: the siorage

uni being transferred and an identifier (ID) that designates the storage unit. (The

size of the storage unit is either implicit or derivable fiom tile representation of the

unit.) Different storage units and corresponding IDs are employed for each level in

the memory hierarchy.

In transfer and archival slrage the units are collections of(one or more) logically

inter-related files that are disti ibuted or archived and reloaded together (see section

2.1). in this context IDs are often character string ile names, perhaps qualified by

the date and time at which the storage unit was created. In secondary memory the

storage units are generally disk sectors and the IDs are sector addresses qualified by

disk identifiers. Files do not fit the definition for storage units at this level in the

memory hierarchy since individual sectors may be read or written and processed

independently of other portions of the file and since non-file data structures, e.g.,

directories and file maps, also must be be protected. In primary memory there are

two choices for storage units, words and cache lines, depending on processor

configuration. Because of the space overhead associated with each storage unit for

security purposes (described in the following sections), cache lines offer the only

practical option for storage units in primary memory. In this context, IDs are

primary memory addresses truncated to reflect the size of cache lines.
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TRM Physically Unprotected Storage

identifier

Read
storage unit

identifier

Write
storage unit

Boundary

Figure 4-3: A Simple Model for Encrypted Storage Operations

Using tile model pictured in Figure 4-3, the vulnerabilities and corresponding

security requirements for Read and Write operations are readily stated. In a Write

operation both the storage unit and its ID are transmitted by the TRM across the

boundary. Unless suitable precautions are taken, the data in the storage unit will be

exposed to an intruder. fence concealment of daa in the storage unit, including

hiding of patterns within and across storage units, is an obvious requiremenlt. 9 An

9 Note that a Write to a secondary or T&A storage device is eflected through read bus operations
(directed to primary memory) by that storage device. lIus there is an additional requirement that
these read operations he restricted to appropriate primary memory locations.
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nt ruder also can Ini t'orinlat ioll releaise by engaging In ia flic anal~ sis, i.e., by

exa11ming pattern's of' access, to ph~sicall\v unpn itectcd storage. T[he IDI associated

with each operation cannot bc concealed: it nitist be availale so that devices can

correctly store and fetch thle stora',ge unlits. Therellbie some level of traffic analysis is

a\a\possible using this approach. As In the encrypted buIs approach, the amnount

oif ilnloration available through traiffli analI)sis is conlFigu rI-lonl- 'and a1ppicationl-

dependent. In general, SYSITEM E provides fewer opportunities for traffic analysis

than SYSTEiNI F which in turn provides fewer than SYSTEMN C; or SYSITEM 11.

Fach of these conf igu rations provides miore detailed tra ffic anialysis iii ormnation

than thle corresponding encrypted-bus con figU ration.

lII a Read operation, ain ID is transmitted by thle TRNI across thle boundary and

the physicall\ unprotected storage System reCturins a Storage uni11t. Thus Read

operations release in formation only throuigh traffic analysis. 10 Th-e remaining

secuirity requirements for Read operations deal with detecting miodification of

in lorniation andi are simply cx plicit statemnents of thle assfinmptions usually associated

with tiornial systemn operation. This the requirements associated with a Read are

simuply stated: The storage unit rcturned in response to the Read must be the most

recent tunit written by the TRM tusing, the samre ID) specified in this Read, and the

Unit mutst not have been modified v%hile outside the TRNI. ibis concise statement

embodies the authenticity, integrity and timeliness assumnptions implicit in normal

operation.

The timeliness assumption is important since it is the foundation upon Which

variouIs application-specific consistency algorithms are constructed, especially at the

primary and secondary storage levels. If software excuLting in thle TRM could not

0Note that a Read from a secondary or l&A storage device is actually effected through bus write
operations (directed to primary memory) hy that storage device. 'Ibus there is also a requirement to
restrict those write operations to appropriate primary memory locations.
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be certain that the disk record or cache line just read was the last one written with

the same ID, secure operation would be impossible! Howeer the timeliness

guarantee is not so Aell suited to transfer and archi l storage. I-or transfer storage,

the guarantee is not applicable since this storage is, by definition, externally

stupplied and not modified by the TRM. (The assumption here is that these storage

units consist of programs and associated static, immutable databases.) Here

consistency is expressed by grouping files into transfer units (see sections 2.1 and

3.6.4). For archival storage, consistency is expressed by grouping files into archival

units and by the reloading constraints associated with files. For archival storage, a

timeliness guarantee is required in sone cases (most-recent-only and non-reloadable

files) and may be ignored in others (unconstrained reloading).

This perspective of intruder attacks and corresponding security requirements

views Write operations as subject to attacks that release information (directly or via

traffic analysis) whereas Read operations are subject to traffic analysis and to various

modification attacks. More precisely, modification attacks during Write or Read

operations or while data is held in storage are detected only at the time when the

modified storage units are transferred (by a Read) across the boundary into the

TRM. The model does not distinguish when or where a modification attack occurs,

e.g., on the bus during a Write or Read Ur in the interim when the data is in storage.

This level of abstraction in discussing attacks and defining requirements is

appropriate since the protection mechanisms developed in this section counter these

attacks independent of the fashion in which they are effected. In addition to these

requirements for operations on encrypted d(ita, there is the need to restrict access to

locations within the iRM (primary memory and device control registers) by non-

secure DMA devices, a requirement that also arose in the encrypted bus approach.

The next section refines this description of security requirements and presents

techniques selected for meeting these requirements.
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4.2 Basic Techniques for the Encrypted Storage Approach

A combination ol ci pIg graphic and protocol techniques ate enployed to achieve

the requiiretllents established in the preceding section. Although these techniques

var.x slightl depending on s'stem configuration, the basic concepLs involved are the

same in each case. One t, pe of attack, tral'lic anal sis, is essentially identical in both

encir pled bus and encrypled storage environments and is treated in essentially the

same fashion in both. In both en ironments the only way to counter such attacks is

through the gencation of sufficient, spurious I/0 operations to conceal real traffic

patterns. Such countermeasures are readily uniplemented but the performance

impact of these cotntermeastires in most configurations is so great as to effectively

preclude their adoption. Thus the only option is to select a configuration which

exhibits an acceptable level of susceptibility to traffic analysis. This shortcoming

with respect to traffic analysis is analogoIs to that presented by the encrypted bus

approach, but here the level of traffic analysis detail available to an intritder is

greater than in corresponding encrypted bus configuttions, i.e., specific addresses

are ,isible. This su,-oests that if traffic analysis is viewed as a serious problem,

encrypted bus systems may be preferred over comparable encrypted storage

con figu rations.

The encryption techniques employed for storage protection must conceal the data

in the storage unit, provide a means for associating an ID with the unit, support

detection of modification of the unit and distinguish among successive versions of

the unit. This last point is very important and deserves further explanation. The

IDs associated with storage units are generally reused, referring to different data

over time. This is certainly true of the addresses used for primary and secondary

memory IDs, except in the case of write-oflce media such as video-disks. For

archival storage the problem arises if file names are used as IDs, unless the names

are further qualified in some way, e.g., marked with the time and date of archival
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unit creation. Most software is Nritten under tile (implicit) aSSmlpti n that no

maleC\olent entity w, ill attem)t to violate system integrity by taking advantage of' I)

reuse. To a\oid this problem, IDs will be atgnented, where necessary, vith a

version tag (VT) to provide version differeniiated II)s that uniquely idCntify each

distinct storage unit over time.

In order to fulfil the security requirements set Forth in the preceding section, the

following techniques are employed. First, each storage unit is encryptcd using a

cipher method employing an initialization vector formed from the unit's Ii) and VI.
Encryption with an appropriate cipher method conceals patterns within I storage

unit. The use of an IV based on the II) and the VT conceals patterns across unit

boundaries and across versions of a unit. Second, associated with each storage unit

is an error detection code (E[DC) I calculated on the ID and VT as well as the data

in the unit. This FDC detects modification of the data and, because it covers the ID

and VT, it detects attempts to return other than the requested unit, i.e., a unit with

the wrong 11) or V T. Finally, a version tag table (V'TT), keyed by storage unit ID, is

maintained inside the TRM. This table provides a reference point for the timeliness

guarantee by establishing the current VT associated with each storage unit. On each

Read, the IV formed using the ID and the VT from the version tag table is employed

to decipher the storage unit. If the storage unit is fiom the wrong location or is not

the most recent one stored at the proper location, the storage unit will be improperly

deciphered and the EDC check will fail.

Using these techniques, Read and Write operations are extended in tile following

fashion. On a Write, the VT for the storage unit is fetched from the VTf', updated

and, with the ID, used as an IV in encrypting the unit before storing it outside tile

llI'his F'I)C may be a conventional error detection code or it may be a cryptographic EDC

(CEDC) or an authenticity/integrity check field (AICF) depending on the encryption mode
employed.
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IM 'Ilhe tDC is calculated on tile II), updawed VI and the data, and it is

encry)ted and stored along with tile unit. The updated VT is stored in the V'fT,

completing the operation. On a Read, the VT for the unit is fetched from the VT

and used wkith the I) as an IV Iir decr)pting the unit as it is transferred into the

IRM. 'he FDC is calculated on the ID, VT and the data as the transfer progresses

and, khcu tie transfer (data and FDC) is complete, the retrieved FDC is compared

to the calculated [I)C. If the F)C comparison succeeds, the storage unit is the one

rcquested and it is intact, so processing can proceed securely in the 'T1M. If the

comparison Ilails, either the unit was modified or the wrong unit was returned

(incorrect It) or V'') and the unit is invalid, e.g., it may be viewed as having an

unrecoverable error.

Just as the simple model of security requirements in section 4.1 does not fully

capture the vagaries of T&A storage, this simple model of secure operation must be

modified slightly to encompass Real operations lor encrypted I&A storage. There

is no need for a VI"' for transfer units since these units are not created by the 'VRM

and are not modified by the TRM. Instead, a version differentiated name is

recorded with the transfer unit for use in decryption. "lhus a Read of a transfer unit

involves no fetch of a VTI' entry. A VT' is required for archival storage to track the

archival unit containing the most recent copy of each file with the most-recent-only

reloading constraint. A table containing the I Ds of all non-reloadable files also must

be maintained. These tables perform the same functions as those described for the

encrypted bus approach designs in sections 3.6.4 and 3.6.5. Since some files may be

reloaded from other than the most recent archival Linit copy (unconstrained

reloading), the version differentiated name is recorded with each archival unit.

Finally, it is necessary to control DMA access to storage locations within the main

TRM in the case of SYSTEM E and SYSTEM F. The individual (write) bus

transactions that implement Read operations must be restricted to appropriate
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primary memory locations, otherwise data in primary memory may be destroyed.

T'his same problem arises in the encrypted bus approach and in the nlonolithic-

TRM design in the context of aggregate transfers by non-secure )MA devices and

the same solution is applied here. The secure storage interface (SSI) must act as a

filter to restrict access to locations within the TRM. This applies not only to

encrypted data transfers but also to accesses by noln-Secure DMA devices, just as in

the encrypted bus approach. For each memory region that is accessible from

outside the TIRM the SSI must be aware of the bounds of the region, whether read

or write (or both) transactions are ailowed and whether the transactions involve

encrypted or cleartext data. Furthcrnore, the SSI must contain intra-TRM bus

traffic, not repeating it onto the bus segment outside the TRM. 'his restriction is

readily implemented by adopting the convention of assigning bus addresses that use

a bit or two to distinguish between devices inside and outside of the [RM as

described earlier.

The preceding discussion outlines the general techniques employed for securing

encrypted storage at each level, but it does not describe all of the details involved.

For example, it does not specify particular encryption techniques nor EDC

computation strategies. Reliability measures and recovery strategies have not been

discussed nor have (he problems of storing large V'ITs inside small TRMs.

Tradeoffs in performance versus security related to the size of VTs and FDCs also

must be addressed. The following sections deal with these problems, specifying the

details of encrypted storage management for T&A storage, secondary storage and

primary memory. Readers who do not wish to delve into these details should

proceed to section 4.6 (page 208) for a sunmary of the highlights and the

conclusions of this chapter.
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4.3 Techniques for Encrypted Transfer and Archival

Storage

The first issue to be rcsolked in filling in the details of secure T&A storage

management is the selection of an encryption mode and an FDC calculation

st ratcgy. Transiir of an archival or a transfer unit between T&A storage and

primary memory takes place at the speed of the T&A storage device, so the cipher

method employ ed need not exhibit especially low delay, i.e., an extra cryptographic

cycle or two on each unit transfer is acceptable. To avoid the need for additional

hardware in the TRM for EDC or CEDC calculation (an EDC chip or an extra

cr)pto chip) a cipher method with Forward error propagation is employed. Since

storage units at this level are relatively large (one or more liles) and space is not at a

premium, precise matching ofencryption granularity aad storage unit length is not a

requirement. These observations suggest that block chaining with

plaintext/ciphertext feedback (PCBC) is an appropriate cipher method for this

application (see section 2.3). A predictable bit pattern embedded in the string at a

known point serves as an authenticity/integrity check field (AICI-) protecting all of

the text preceding it. A version differentiated name employed as an IV is implicitly

included in such an AICF.

4.3.1 Version Differentiated Names and the Archival Unit VTT

The next issue to be resolved is the form of version differentiated names for T&A

storage and the related topic of a VTF for archival units. Clients and subsystem

writers often think ofT&A storage in terms of the names of the files recorded on the

media. However, transfer and archival units may contain several files grouped to

reflect logical dependencies among them, so individual file names are not always

appropriate as IDs for these storage units. Moreover character string file names

must be qualified in some way to distinguish successive archival units of the same
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tile (or groups ol files). To avoid these problems, a unique bit-siring icnILl1l (.

UID) is assigned as a version differentiated ID for each transfer or ardhival unit.

Media used for transt'er or archival storage usially contain a catalog thait mlaps tile

names to their location(s) oil the media and this catalog is easily cpanded to

provide a file-name-to-UIt) mapping. For archival units with the mnost-reccnt-only

reloading constraint, a second niap is needed: an archiil V77' that associates with a

file tile UID of the most recent archival unit containing the file. (Non-reloadable

tiles also are included in this table, using a distinguished UI D to dilTerctiat then.)

The archival VVI' is maintained on secondar storage as a table of file naies and

Ul)s Imb files exhibiting this reloading constraint.

4.3.2 Format of Transfer and Archival Units

Figure 4-4 illustrates a sample formnat for an extended media catalog (containing

storage unit UIDs) and for transfer and archival units (the two are quite similar).

Note that tile media catalog is unencrypted and is nol i-standard only in the addition

of the U ID field to each entry. However, each storage unit (transfer or archival) is

encrypted. Ti'he unit begins with a header describing the unit and tile files contained

therein. The exact fields contained in the header will be systen- and niedia-specific

but should include the unit type (transfer or archival), header and total init length,

etc. Typical file entries would contain the ile nare, length, reloading Constraint

and oilier attributes included as an aid in (re)constructing secondary storage catalog

entries. An AICF is appended to the header, providihg a check oil it, and the files

follow this AICF directly, The entire unit, froin header through final AICF, is

encrypted as a continuous bit string using the PCI3C cipher method noted above. In

principle, only this filial AICF is required but, since the header is used to control

reloading, the header AICF is included to detect errors that might resullt in file

system damage before the final AICF is encountered.
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Storage Unit
(encrypted)

overall unit description

Media Catalog file name attributes
(cleartext) 0

media descriptive information
header AICF

file name location UID

file 1

file n

overall unit AICF

Figure 4-4: Format of Secure T&A Storage Media

Although the format of encrypted T&A media is similar for both transfer and

archival purposes, there may be a difference in the key used to encipher the media.

If transfer units are enciphered using the master key associated with a TRM, the

units cannot be recorded until the target I'RM is known. Demand recording of
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transf'cr Units is quite feasible for mail-order sales of proprietary software and could

he carried out at local stores using high speed COlmunication facilities to transmit

the units For local recording. (Network-based distribution of external software is

carried out in this approach just as it was described initially in section 2.3.4.)

Alternatively, transfer units can be pre-recorded under randomly selected keys,

which are then enciphered under the master key of the target [RM. This is

essentially the same technique employed in the encrypted bus aplproach (for

distribution of TRM components) and it requires only low speed communication

between a local store and the vendor. In this approach the encrypted key can be

recorded, at the local store, in a reserved location in the media catalog, making life

somewhat more convenient for the client. The former distribution method is

preferred since it means that the TRM need deal with only al single ke, lbr all

encrypted storage, but the latter method can be employed if necessary.

4.3.3 I/0 Operations on T&A Storage

It is now appropriate to examine the details of Read and Write operations on

transfer and archival storage units. Remember that these storage units may consist

of as little as a single ile or may be a collection of a number of files. First, consider

operations on transfer units. These units are Read by TRMs to initially load

external software but TRMs are not allowed to Write these units. (The TRM

operating system controls all encrypted I/O so it is capable of enforcing this

prohibition.) Tol Read a transfer unit, the media containing the unit iS mounted, the

(cleartext) media catalog is scanned to determine the location and U!!) of the unit of

interest (or of any file contained therein). This UID is loaded as an IV in an SSI

crypto device in preparation for decrypting the transfer unit. (If transfer units on

the T&A media are encrypted Under a key other than the TRM master, then the

encrypted form of this key is retrieved from the media catalog and loaded along

1with the UID.)

i 171



An Encr) pied Storage Approach

Next, the unit header is decryptCd and transferred to primary memory where it is

checked (using the embedded AICF and the header length constraint) and used to

estahlish entries in the file systcl catalog 110r tile files in the unit. Note that transfer

Units mayd sCrve as archival units for the p o grams and databases that constitute a

protected suhbsStelli, since tile files on these units are [lon- nidifiable, so file system

entries may alrcady exist for some of the file in the unit. If so, these entries are

deleted hcn encountered ill this phase of' the unit Read operation, to ensure that

the file s~steni entries are consistent. However, any non-reloadable files contained

in the transfer unit are not deleted if encountered. Rather a check is made against

the archival VTF to ensure that any non-reloadable files in the transfer unit do not

currently exist and have not existed previously (and were later destroyed). Non-

reloadahble iles being loaded for the first time are recorded in the archival Vl'r to

preclude any violation of this constraint. Each ile in the unit is decrypted and

trmsferred to primary memory and entered into the ile system in secondary

storage. When the last file has been transferred, the AICF covering the unit is

checked. If this check succeeds, an OKflag in each file system entry just loaded is

set to TRUE, indicating that the entire unit has been loaded successfilly.

For archival units, both Read and Write operations are supported. An archival

unit is created (a Write) by a call on the TRM operating system specifying the

collection of tiles that are collected together to form the unit. External software

invokes this operation on its mutable databases (or on tile software itself) either

periodically or when requested by the client. 'lie operation begins with the

mounting of archival media. lic (unencrypted) media catalog is transferred to

primary memory and modified to contain an entry for the new archival unit (virgin

media is initialized with I mll catalog). 111C unit header is constructed, gathering

information from ile system entries for each member of the unit, encrypted and

transferred to the media. Tlhcn each file is encrypted as part of a continuous

cryptographic chain and transferred to the media with an AICF appended to the

end, and the updated media catalog is re-written.
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Reloading an archival unit (a Read) is very similar to loading a transfer unit but

the impetus is generally different. Usually tile opeIItion is triggered b) daniage to

data in secondary memory, but it also may result froll a program error or a client's

decision to "roll-back the clock" with respect to some processing. A request to

reload any file in an archival unit results in reloading all of the files in the unit (to

ensure consistency). When reloading an archi al tnit, reloading constraints

associated with the files in the unit nust be checked. "Iliese constraints will be

uniform Ior all files in the unit, i.e., all will either be most-recent-only or

unconstrained. Only if tie unit consists of most-recent-only files does the Read

operation check the UII) specified in the media catalog against the UID fron the

archival VIT and require that the two must match. I ike the Read of a transfer unit,

any files in the archival unit which already exist in the file system are deleted to

ensure consistency. Thus a Read operation on an archival unit is almost identical to

a Read operation performed on a transfer unit.

4.3.4 Robustness of the Archival Storage Protection Measures

If the archival VTT is damaged, files with the most-recent-only reloading

constraint cannot be reloaded (since there is no way to determine which archival

truit contains the most recent copy of the files). This type of damage need not

preclude reloading of files that do not possess this constraint since the archival units

for such files can be examined to determine their (lack of) reloading constraints. To

enhance system robustness, the archival V'IT should itself be archived (as a most-

recent-only file), but this poses a problem. If the archival VIT is damaged and its

most recent archival copy is reloaded, the entries for most-recent-only files archived

since the archival VITi copy was created are lost, violating the most-recent-only

constraint! To avoid this problem, updates to the archival VIT must be recorded in

a non-reloadable File, the archival V77' update file, which is erased every time the
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archi\al \'I1 is archived,. The LI) of the current archival copy of the archival

VI H ust he1 maintained in some highly rliablc fiashion Nithin the TRM, e.g., in

non-x olalile memory.

These measures allow recovery froma a \ide range of secondary storage Iailures

afctMing files and catalogs. Even file system catalogs can be archived (with the

most-recent-only attribute) and reloaded to facilitate recovery from lailures that

damage these catalogs. In fact, these meIasures are so effective in promoting system

robustness that they might create an opportunity to violate security provisions

relating to non-reloadable files. A problem would arise if a non-reloadable file

could be created, used and destro)cd along with any record of its existence. To

avoid this problem, lien a file with the non-reloadable attribute is created, its file

name is recorded in the archi\ al VTF and is marked as a non-reloadablc rather than

a most-rccent-only file (by using a distinguished value for a UI D). Since ipdates to

the archival VTT are protected by being recorded in the archival VIT update file

until the archival VTF is archived, this solves the problem of Iost non-reloadable

files. When a subsystem attempts to creatL a non-rcloadable file (or when a transfer

unit containing a non-reloadable file is loaded), the file naine is checked against the

archival VIT to prevent violation of the timeliness guarantee, and an entry is

created only if this is a new non-reloadable file.

This existence of the archival \TF does not enhance system robustness with

respect to non-reloadable files (If such a file is damaged it is lost.), and it might even

diminish robustness. If both the archival VIT and its update ile are lost, no new

non-reloadable files can be created or loaded from transfer storage and no most-

recent-only file can be reloaded. However the loss of both of these files can be

made very unlikely. The loss of any non-reloadablc file is a very serious matter

since it precludes use of the external software that employs the file. This suggests

that non-reloadable files, including the archival VTT update file, should receive
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special consideraion firorn the ile system. For example, such files can be recorded

at two physical locations in secondary storage and have similarly redundant catalog

entries to reduce the likelihood of their loss. Note that non-reloadable files are

expected to constitute a relatively small fraction of all files, and may not occur at all

in many systems, s) these extraordinary robustness measures should not have a

significant impact on the system.

4.3.5 Effects on Performance, Storage Utilization and the Operating

System

Now that the description of protection measures for T&A storage is complete, it is

appropriate to consider the effects of these measures on "I'RM operating system

structure, system performance and storage Utilization. The TRM operating system

provides three new (or enhanced) functions: the Read operation for transfer units

and the Real and Write operations for archival units. TIhese operations have been

described in some detail and are fairly simple. The operating system utlSt make

special provisions for creation and management of non-reloadable iles, but sonic of

these provisions would be required even in standard systems. System performance

should not he significantly affected by the proposed measures: operations involving

T&A storage are relatively infrequent, and the cryptographic transformations should

not prove a bottleneck but only add a small delay to DMA transfers involving this

storage. Delays will result from checking the archival VIT during reloading of

most-recent-only files and creation or initial loading of non-reloadable iles, but

these are infrequent operations and thus the effect is not severe.

With respect to storage utilization, the protection measures increase the sizes of

media catalogs and T&A storage units, and require two new tiles: the archival VIT

t and its update file. Catalogs for T&A media grow to accommodate storage unit

UIDs whereas storage units grow to include reloading constraints and AICFs (and
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may require padding for encryption). A 32-bit AICF should provide adequate

protection for these storage units, especially since two such fields are contained in

each unit. The UID associated with each unit should be large enough to identify

every archival unit ever produced by a given TRM and to distinguish every

distribution unit provided for a given TRM. A 32-bit UID permits a vendor to

provide over 4 billion distribution units to a single 'FRM and supports archival unit

creation at the rate of one per second for over 120 years. The IV used for

encr)pting/decr2pting storage units should be a fuill 64 bits, so the 32-bit UID is

atugmented with 32 additional bits. Two of these additional 32 bits are used to

distinguish among UI Ds enlployed for archikal. transfer and secondary storage units

whereas the remaining 30 bits are unique per TRM. (This last set of bits may be

viewed as an extension of the 'RM master key.)

The increases in space on T&A media due to AICFs and UIDs are negligible

(probably < 1%) since the storage units are files or groups of files. Some secondary

storage space is devoted to the archival VTr and its update file, and the media

containing these tables must be mounted for creation of non-reloadable files and

reloading of most-recent-only files. Files with these reloading constraints are not

expected to be the norm, so the archival VTi and its update file will not be too

large. Thus the effects on storage utilization brought about b the measures are not

expected to be significant. The impact on overall system robustness also should be

minimal. The two new types of secondary storage data introduced to support

encrypted archival storage, the archival VrF and its update file, are critical to

system operation. However, the archival VIl is archivable and its update file is

expected to be replicated in storage and catalog entries, like other non-reloadable

files. Thus, only if both of these files are destroyed simultaneously will the system

suffer irreparable damage.

176



An Encrypted Storage Approach

4.4 Techniques for Secondary Storage

"The protection measures presented in this section follow very closely the basic

concepts presented in section 4.2. In this context, storage Unit IDs are sector

addresses qualified by tile ID of the media containing the unit. The VIT, implicitly

indexed by sector address, contains the VT associated with each sector for every

encrypted secondary storage volume registered with the system. The integrity,

authenticity and timeliness iequirements are exactly as stated in section 4.1, with no

exceptions. Thtns Read and Write operations (sector transfers) proceed just as

described in section 4.2. Even though perfbrmalance degradation in storage unit

transfers is more critical at this level than at the T&A level, the same cryptographic

method is employed. l-hroughpUt With this method is more than adequate (even

using a single crypto chip) and the added delay is still a negligible Fraction (<< 1%)

of total sector transfer time. A 32-bit AICF is appended to each sector, increasing

f1 sector size by about .75%.

4.4.1 The VTT Hierarchy

The major problem with this obvious approach is that it is impractical to mairtain

a secondary storage VTT within the TRM boundary. For example, a typical 30M-

byte (unformatted) disk contains about 50,000 512-byte sectors. If each VI' entry

consists of a 32-bit VT (assume the address of the sector being protected is implied

by index of the VT in the Vi'), the resulting VIT occupies 200,000 bytes and this

covers only a single volume! The amount of secondary storage devoted to the

secondary storage V'I' is not a concern, but it is generally impractical to maintain

this V'lr inside a TRM. This space problem suggests that the secondary storage

VTT should be hierarchically organized, with only the root maintained within the

TRM. Figure 4-5 illustrates a 4-level hierarchy for the secondary storage VIT.
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RVTT MVVTT VVTT SGVTT data
(level 0) I (level 1) (level 2) (level 3) sectors

EDC E EDC

SDc I EDC

TRM non-demountable
register. volume per-registered volume

Figure 4-5: Hierarchic Organization of Secondary Storage VF"

In this figure, the arrows indicate which sectors are covered by ViT entries in a

given level of the VTT hierarchy. Below the root VJT (RViT) (level 0) is the

master volume vrI (mVVTT) (level 1) which contains one entry for each

ciicr pied volume registered with the system. Each volume contains a volume VTI"

i'VVIT) (level 2) and below it is the sector group Vr'I (SGVTF) (level 3). At each

icel of the hierarchy a VTI protects the sectors at the next level with the bottom
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level (sector group) ViT protecting data sectors. Tlhis recursi'e SItC rtItre protects

every sector in secondary storage in the same fashion by using the associated AICF

and the corresponding VT recorded in the preceding leel of the hierarchy, hence

there is no difference in the protection afforded a data sector versus a VIT sector at

any level.

ie root VTI" contains the volume ID and addresses of each sector occupied by

the master volume ViT as well as a VT for each of these sectors, all maintained in

non-volatile storage within the TRM. Each master volume Vii entry contains the

ID of the volume represented, the addresses and VTs for the sectors that make up

the volume VTT and other supporting information. At the volume VT'T and sector

group Vi"i level the addresses of the sectors being protected need not be explicitly

stored along with the VTs, but can be implicitly derivable from the index of the VTs

in the VTT's. Implicit addressing in the volume VT"' entries requires the sector

group VIT sectors to be contiguous or to be dispersed about the volume in some

fixed pattern (to optimize seek time). The sector group VTT always employs

implicit addressing, since it is usually trivial to arrange for the sectors covered by

these entries to be contiguous. 'Throughout this chapter the assumption is made that

the sector group VTF sectors are contiguous in order to reduce the amount of space

devoted to volume Vii entries. (This assumption does not affect the security of the

design.)

This hierarchic structure avoids the need to store the entire Vii inside the TRM,

but it transforms each reference to secondary storage into a chain of references

through the levels of the hierarchy, as shown in Figure 4-5. Consider a reference to

a sector with ID (fully qualified address) vx, where v is the volume ID, and x is a

sector address. The reference chain begins at the root VIT with the volume ID and

addresses of the master volume VTF and the VTs for each master volume VTT

sector. Using this information from the root Vi', the master volume V'F sector
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colai n ing thc entry 16r \ olumc v Is Fetched. (It inaN hc ncccssary* to se rially search

111 k ablc iU' %olunlc ID S arc Sparse or it e nrics in the mastcr volume '[IT are of

u riahic Size.) 111C VI MInd th1C addr(1CSS ofLthC appr'Opriate sector of the Volumne V'IT

is SucICCId from11 thiS Master x oILume V171' cntry b examining the target address x.

l'hkioluc VII scctor is 1etlicd and thle VT' and address of the appropriate sector

Of thle SCetor- gr'oup VvT Is selected in the same Fashion. Finally this sector group

\tlT scctor is [etched and thle VT for thle target sector is selected.

F-ollowing this chain of references results in at least 4 sector fetches (perhaps

more depending on the master VOlumie VIi' organization) as compared to the single

1ktch required in a standard system. This sort of problemn conimonl arises in

hierarchic address translation and it is usuially solved by encaching portions Of thle

tranislation tables to shoi circuit the reference chain. In this context encaching

ineans keeping portions of the mnaster volume VTI', volume V'l' and sector group

Vii' in primary memory to reduice extra sector fetches. From (lie master volume

VIi'. entries that correspond to currently mounted volumies should be cached. Since

the systems of interest are sinall and Master voILlue VTI' entries are smnall (about 64-

256 bytes depending onl the capacity of the VOIlwime), these entries (perhaps 2-5)

occupy a negligible percentage (((1%) of primary mnemory. At the volume V'FT

level the amount,11 of information to be cached depends on the size and numrber of

mounted voIlumes and the size of primary memory. For example, small and

medium size volumes, e.g., 4M-byle floppy disks through 30M-byte fixed disks,

have voLlue VTi's that occupy about 1-4 sectors, so it is probably feasible to cache

LhC entire voIlume '[Fl for such voluimes. However, for large volumecs, e.g., 300M-

byte demimntable disks, the volume VIi is very large, abotit 36 sectors, miaking it

likely that only portions of this table will be cached at any point iii time.

Proceeding to the bottom of the hierarchy, sector group VI Vs will range in size
from about 64 sectors for a small disk to about 500 for a medium size disk and up to
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4000 for a large disk. Thus it is usually infeasible to cachu the entire sector group

VTF of a volume in primary memory. In fact, it is often inappropriate to cache

whole sector group V'IT sectors since, in the worst case (if each sector in primary

memory comes from a location not covered by an) other sector group VT'F sector in

the cache), there must be one sector group VTr cache entry for each sector in

primary memory. This worst case behavior could result in the sector group VIr

cache occupying 50% of primary memory and thus motivates caching only portions

of sector group V-T sectors, e.g., 8 word pieces instead of full 128-word sectors. In

this ashion only about 8% of primary memory is required to cope with even the

worst case scenario for the sector group VIT cache. Overall, the caches for the

master volume VTl', volume ViT and sector group V1T may occupy about 10% of

primary memory if organized in this fashion.

4.4.2 I/0 Operations on Secondary Storage

Using this VTF hierarchy, Read and Write operations pr6ceed as follows. On a

Read, the volume ID and sector address are combined with the sector VT to form an

IV for decrypting the target sector. When the sector has been decrypted, the AICF

following it is checked against the computed value and the operation is aborted only

if the check fails. On a Write, the VT for the sector is fetched from its cache,

updated and used as above to form an IV for encrypting the sector and the trailing

AICF. When the Write completes, the VT cache entry is updated and, at Some later

time, the VT" in secondary storage is updated. These descriptions apply to

operations on all sectors and the VT updates propagate up through the hierarchy.

When a volume is mouifed, the master volume VTVI is Read and searched for the

entry for the mounted volume, then this entry is stored in the master volume VTI

cache. If the entire volume VIT of the volume is cached, it is Read, otherwise

sectors (or sub-sector portions) of the volume VT'F are Read as needed.
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References to data sectors proceed as noted above if there is a hit on the sector

group VIi cache. A miss on this cache results in flushing a cache entry, if none are

available, and tie appropriatc sector group V'I' sector is Read, using the volume

V'IT cache for the Read of the sector group VTI. If a modified sector group Vr[

cachc enlry is flushed, it must be Aritten back. This entails a Read of the containing

sector gnrup VIT sector, an update of the sector (which is noted in the VOLUM E

VI' Tcche), and a Write of the sector. A miss on the volume VTI" cache is handled

analogously, but will be simpler if vohinle V 'I cache entries are whole sectors

rather than sub-sector pieces. Periodically, or when requested by the client or

external software, all modified entries in the V'F caches can be flushed, starting at

level 4 and proceeding thiirough an update of the root in the TRM, producing a non-

%olatilc, consistent version of' the V"I hierarchy in secondary storage. Until this

flushing operation takes place, changes to files (in particular, modifications to non-

reloadable files), are not permanently recorded in the VI''s and thus may be

undelctably undone by an intruder.

This Vi'I hierarchy is organized solely around the physical media without regard

to file system structure, thus demonstrating that these techniques can be employed

independently of such structure. However, it may be advantageous to integrate the

hierarchy with the file system structure. For example, the sector group VTF VTs

can be integrated with the tables used to map sectors of a file to their secondary

storage locations, and the volume VTF can be extended to cover these integrated file

maps/VTrs. The file maps will grow by about 200% (due to the presence of Vl's)

but since the cache space devoted to such maps is often oin the order of 1.5-2.5% of

primary memory, the cched level 3 VTs will require only 3-5% instead of the 8% of

primary memory noted above. Integrating the scctoi group V'IT and file map

caches takes advantage of the logical locality of reference implicit in file structure.

In this way, whenever a sector can be directly referenced, by virtue of its file map

being in the cache, its Vi also is present, improving the sector group VIT cache hit
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rate and simplifying the lookup procedure for sector group VTT entries! The only

drawback to this approach is that the volume V'rF becomes larger (about 50%) since

it covers more data (file maps as well as level 3 VIs), and thtis the volume VIT

cache grows or its percentage coverage decreases.

4.4.3 Performance, Robustness and Storage Utilization Issues

It is now apl)ropriate to evaluate the impact of thuse secondary storage protection

meastres on robustness, storage tiilization and perfh)rmance. In secondary storage

live t)pcs of sectors are distinguishable with respect to their impact on system

robustness: rcloadable files and catalogs, non- reloadble files (ili liding the archival

VTI' update rile) and their catalog entries, sector group VI's, voluiie VFI's and the

master volume ViT[. The first type is present in all systems, the next arises from

encrypted archival storage security measures and the last three support encrypted

secondary storage. Ili us the question is how damage to the last three type of sectors

affects the other sector types, in particular how it affects non-reloadable files. A

reasonable goal is to prevent the loss of any single sector from causing an

irrecoverable loss of data, i.e., loss of" a non-reloadable file or its catalog entries.

I)amage to a sector group VIT sector results in loss of the 128 sectors covered by it.

'his may include ordinary files, catalogs and non-reloadable files. l reduce the

likelihood of losing a non-reloadablc file, the replicated non-reloadable file sectors

and catalog entries should be covered by different sector group vi'I sectors.

Integration of the level 3 Vs with file maps makes this easier because of the

relationship between files and level 3 VT sectors.

Damage to a volume VfT sector results in the loss of 128 sectors of sector group

V[I', or of file maps and level 3 Vrs, and, transitively, of 16,381 file and catalog

sectors. This is a significant loss of information and makes it difficult to guarantee

that the replicated copies of a non-reloadable file and its catalog entries are not
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covered by a single %,olume VI'I" sector. Since onl% a few sectors (1-64) are devoted

to a volume V'IT on each volume and since 1/O on these sectors is relatively

infrequent, it is Iasible to replicate these sectors on each volume. A similar

arumncnt applies to the master volume VI', which is both smaller and more

implortant in its coverage. 'Ihis replication rCquilCS slightly larger master volume

VIT entries (to contain the addresses of both volume VI's on each volume) and

inore non-volatile memiiory in the TRNM (Ibr the dual master volurie VT"

addresses), but these are very small increases in storage ulilization. "lwlise added

precautions yield a secondary storage systCi in which no single sector fililule can

result in an irrecoverable loss of data.

These protection measures have only a very slight effect on secondary storage

utilization. Together, the space occupied by each sector grolp VIT (or its

integrated file map alternative), volume Vi'" (including backup copY) !nd the per

sector AICFs am1OlntS to about 2% of a formatted toIhlle. The space devoted to the

master volumC VT' and its backup copy should constitute a negligible fraction

((<1%) of the storage on a permanently mounted volume. ]'he caches for level 3

VI's require about 3-5% of primary memory if the V'l's are intcgrated with file Inaps.

The percentage of primary memory devoted to the volume VIT cache depends on

the size of memory, the capacity and nLmber of mounted secondary storage

volumes and the fraction of each volume VITi requiircd in the cache for acceptable

performance. For example, the volume Vl's for two 30M-byte disks occupy about

2% of a 256K-byte primary memory. Thus a total of about 4-7% of primary memory

may be dedicated to VT'F caches. (The master volume VI'F cache is a negligible

contributor to this total.)

System performance is aflected in several ways by the secondary storage

protection measures. On each Read of a file or catalog, there is a delay resulting
from the transactions required to control the secure storage inte face (SSI), to fetch
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the AICF word and to decrypt the last tAo data words in the sector. Controlling the

SSI involves loading the sector address, volune I) and VT to form the IV, and

loading the priniar memory sector fiame address and access mode (read or write)

to restrict I)MA access. The bus transactions required to control the SSI can be

carried out during the accessing of the secondary storage device before the data

arrives, given the average access time of secondar. storage devices. Thus these

transactions do not contribute to delay, they only increase bus utili/ation slightly.

Moreover, the decryption of the last two data words can be overlapped with the

fetch of the AICF word so the total delay experienced is the maximum of these two

operations. For unbuffered secondary storage devices, the AICI- transfer requires

greater time, but it is only about 3ts for a 10 M-bit/sccond transfer rate, a negligible

(<< 1%) increase i total Read time.

If level 3 VTs are not integrated with file maps, misses can oc(cur on the sector

group ViT cache, resulting in signilicant delays. Such a miss requires locating a

cache entry to flush, updating the secondary storage sector group VIT sector if this

cache entry has been modified (this requires a Read and a Write on the relevant

sector group VIT sector) and performing a Read on the sector group VI'r sector

containing the required VT. Thus either I or 3 extra secondary storage Operations

are required on a miss and this could noticeably degrade performance if the cache

did not achieve a high hit rate. For example, a 90% hit rate might result in a 20%

delay on secondary storage I/O and a 95% hit rate yields a 10% delay. This strongly

motivates the integration of level 3 VTs and file maps, since such integiation

eliminates VIT cache misses at this level. (The only way a tile can be referenced is if

its map is in primary memory.)

Employing this integration strategy, cache misses at the \olumnc VTI level occur

at the point when file maps are Read. For mnan small anld mCdiuim capacity

volumes, the entire volume V-i' can be cached, complctcly avoiding misses at this
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level. Even if caching of whole volume VJ17's is impractical, the volume VIT cache

should accommodate a very large percentage of the volume VIT, achieving a very

high hit rate and minimizing the delays due to misses. Only in the case of large

volumes is there likely to be any significant delay due to volume Vii' cache misses.

This suggests that very large volumes may best be handled by dividing them into

multiple virtual vohmes like the mini-disks employed by VM/370. Ile time

required to fetch the master volume VIT entry for a volume when it is mounted is

easily absorbed in the manual mounting process. It is very difficult to estimate the

perlormance impact of the additional secondary storage I/O required when a VtT

flush operation is undertaken, especially since the frequency of such operations is

application- dependent. i lowever it scens reasonable to assume that such

operations are not so frequent as to significantly affect performance

In the interest of improved performance and enhanced robuistness, some bubble

nemory storage can be included within the TRM. The entire mnaster volume VIT

and the archivid VTI" update file can reside in this storage, eliminating the need for

a permanently mounted volume containing these tables. Moreover, the complete

volume Virs and sector group Mii's for several mounted volumes can be cached in

such storage. This would eliminate secondary storage transfers related to V'

management except when a volume is initially mounted and before it is demounted.

Bubble memor access time is fast enough to fetch level 3 VTs friom this cache

instead of from primary memory (for non-bubble memory secondary storage

devices). This configuration option is in no way essential to the design presented

above, but the availability of high density (4 M-bit) bubble memory chips makes it a

feasible means of enhancing system performance and reliability.

186



An Encrypted Storage Approach

4.4.4 A Note on the Size of Secondary Storage VTs

ThroughotIt this section the VTs have been described as 32-bit quantities. This

distinguishes about 4.3 billion versions of a sector. For a data or catalog sector, a

maximum rate for write-backs is probably on the order of I every 10 ms for a disk

(assuming a transfer rate of about IOM bits/s, an average latency of about 9 ms and

some system overhead). At this rate the VT of a single sector could be exhausted

(wrap around) in about 1.36 years of continuous write-backs of that one sector. 1flis

rate of use is obviously much greater than would be expected in normal operation,

perhaps by an order of magnitude, yet it is difficult to estimate a reasonable write-

back rate. Thus some provision should be iiade to acconiniodate the possibility that

a VT will be exhausted in the lifetime of a secondary storage volune. 'File method

should provide for an orderly transition that allows the data recorded on the volume

to be used as though nothing sptecial had happened.

The proposed method involves two additions to master volume VIr entries and a

new value to be held in non-volatile mernory in the TRM. 1ie master volume V\f

additions consist ofra field to track the maximum value attained by any (data sector)

VT on the voline and another field to provide a Volunie UID used only for

cryptographic purposes. The new value held in the TRM is a global counter used to

generate these volume UIDs. The UIDs are used in i'rming the lVs employed in

cryptographically transforming sectors on the volume, instead of simply using the

logical volume II) described earlier. When a new volumc is registered with the

system the global counter no',d above is incremented to generate a UID for that

volume. When a threshold is reached on the per-volumnc, maximum VT' value

(indicating that a VT on the volume may soon be exhausted), the global counter is

again incremented and the client is notified that the volume nuiist be copied to a new

volume. This new volume will be assigned the same logical volume I0i used for

addressing, but it will have a different volune UlD. (The old volume later can be

recycled into a new volume using this procedure.)
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In COl) iiig' the ld W11olulle to the new ,oltie, e,_acl sector is re-encrypted using

tle IV lornied fiom the neA volulC UI1), tle sctor address, and a re-initialized

sector V'T. ThIe volume UII) field in the master volume ViT entry for the new

\olme is updated after the copy operation is complete and has been checked. The

6-il IV used throughout this chapter is di'idcd into four fields here. Two bits are

used to distinguish among the four storage uinit types: transfer units, archival units,

sectors and cache lines (see section 4.3.5). Twenty bits are devoted to the sector

address (allowing up to IM sectors on a single volume) and 32 bits are devoted to

the sector version tag. I'his leaves 12 bits for the volume UID, supporting over 2K

volume versions over the lifetime of the system. Since it was noted above that it

would take about a year to exhaust the sector VTs for a single \olunme at a maximum

rate, this should prove to be an adequate nlmber of volume versions!

4.5 Techniques for Encrypted Primary Memory

The protection measures developed for encrypted primary memory are similar, in

many respects, to those described in section 4.4 for secondary storage. The integrity.

authenticity and timeliness constraints for encrypted primary memory are exactly

those stated in section 4.1 and imposed at the secondary storage level. In primary

memory the storage units are cache lines and the IDs are the primary memory

addresses of these lines. (It will become clear in this section why individual words

are too small to be treated as storage units at this level.) Using the model developed

in section 4.2, modifications to a storage unit are effected by a Write of the entire

unit. Thus only write-back caches are applicable here, since write-through caches

effect modifications through partial updates of cache lines. When a storage unit is

transferred from T&A storage to secondary storage, it is transformed from the T&A

representation to the secondary storage representation. The transfer or archival

storage units is decrypted, its AICF is checked, it is divided into sectors and re-
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cncr.ptcd \\iLh an AICF f1r each sector, and tile relevant secondar) storage VTi"

entrics are updated. The inf erse of this transfiormation takes place when files are

archived.

Analogous procedures take place when an encrypted sector from secondary

storage is transficred to primary men]or\ and transformed into encr)ptCd cache

lincs or \ ice Nersa. Configurations such as SYSTEM II provide a natural point, the

bus coupler, for performing these transformations, whereas con figurations such as

SYSTEM G are unsuitable since they provide Untmediated access (by DMA devices)

to primary memory. Adopting the formler configuration, there are two secure

storage interfaces (SSIs) in tile TRM: one interfacing to the I/O bus and the other to

the memory bus. 'he I/O bus SSI controls Read and Write operations on T&A and

secondary storage units and restricts access to primary memory by deN ices on that

bus, whereas tile memory bus SSI manages these operations for primary memory.

For reasons of design simplicity, all data in primary memory is encrypted, including

data stored and fetched by non-secure DMA devices under the control of the !/O

bus SSI.

The V1T for encrypted primary memory is implicitly addressed by ID and it

contains one entry for each cache line in primary memory. Since, in con figurations

such as SYSTEM I!, there is essentially no storage within a TRM, a hierarchic VTF

structure and Vi' caching may be appropriate here, too. Despite these many

similarities to encrypted secondary storage, there are several aspects of encrypted

primary memory that distinguish it and which warrant special consideration. For

example, storage units (cache lines) are so small that tile space devoted to VTs and

AICFs constitutes a significant fraction of tile storage at this level. Special efforts

are rcquircd to reduce this overhead to acceptable levels. Also transl'ers of cache

lines across the ItRM hou ndar (through the memory bus SSI) must take place at

very high speeds and deliver tile requested data with minimal additional delay. To
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meet these stringent perlbrmance constraints, special care is required in the selection

of cryptographic techniques for concealment and detection of modification. The

following sections address these problems in describing encrypted primary memory

techniques in detail.

4.5.1 Downsizing and Storage of EDCs

llic EI)Cs (A ICFs) and Vrs employed for T&A and secondary storage are 32-bit

fields. (Throughout this section and the next the term EDC will be used generically,

encompassing AICFs and CEDCs as well as conventional FDCs.) 'The space

devoted to FDCs, VTs and various auxiliary data structures, e.g., T&A storage unit

headers, anmount to less than 2% of the space occupied by the storage units being

protected (even less for most T&A units). Cache lines for the systems of interest are

only 16 or 32 bytes long, so 32-bit EDCs and VTs would require primary memory to

grow by 25-50% to accommodate these fields! Although the pcr-bit cost of memory

is declining rapidly, the storage overhead for VTs and EDCs would unacceptably

increase system cost in most cases. This overhead can be reduced only throUgh the

use of smaller fields for the EDC and VT, e.g., cutting these fields in half. (The

alternative of larger cache lines is rejected since the proposed 32-byte cache lines are

already quite large for these small systems.) In the encrypted bus context it was

suggested that a 16-bit FDC might be adequate for most applications and the same

argument can be applied here. With such a small EDC, it is necessary to limit

automatic retries when an error is encountered and to establish an error threshold

which, if reached, causes the system to shut down and requires intervention by the

vendor, as proposed in section 3.6.3.

It may appear that the adoption of a 16-bit (halfword) FL)C for cache lines

engenders a drastic response to errors but this response is justifiable. Note that this

FDC does not replace the error detection and correction code usually employed
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\ith solid-state mcmoris. So only errors that evade that code will be dealt 'Aith by
this securt' mechanism. 'l'his suggests that errors detected by this sCcurity are likel)

to he the result of tampering attempts and thus warrant a seere response. With an

appropriate choice of error threshold it is unlikely that a non-malicious client will

ever encounter this response. Since encrypted primary memory, like an encrypted

bus, provides only a teMiporar repository for data, halting and restarting the system

in the event of an error should not result in a significant loss ofrdata.

One other aspect of FDC management for encrypted primary menory deserves

mention: the location of EDCs. 1l1w mapping of cache lines to )riI11al inenory

localions is very simple because the length of lines is ioruall' , an integral power of

two. Any effort to append halfword FDCs to lines wo0u1ld reqtiriiic either a mIuch

more complex mapping or sonic form of non-standard primary menmor interface,

e.g., one in which the EDCs were implicitly addressed (and do not occupy a portion

of the "normal" primary memory address space). Since one of the motilations for

con figu ring systems of this sort is the ability to use "off-thC-shl f" primary memory,

this seems like a bad approach. The alternative is to group all the FDCs into a

ContiguouIs table in primary memory and to fetch the appropriate EDC using a

separate bus transaction. "Tis approach generates somewhat more bus traffic and

delays delivery of the EDC, but in a cache-equipped system the additional bus

traffic is not a Imajor concern and the increased delay is not important due to other

timing constraints (see section 4.5.4). Thus EDCs will be collected together in a

table in primary menory.

4.5.2 Downsizing of VTs: The Cryptographic Refresh Process

Reducing the size of VFs is a more complex task. 'Fhie Vi lLust riot be allm ed to

-wraparound under a single key lest security weaknesses result (see section 2.3). 'lle

VT for a cache line is updated whenever a cache miss Yccurs that results in the
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c% iction of a niodified instance of that line (a diroy miss). The worst case scenario for

VT updates proceeds as follows. A modified cache line is evicted (a dirty miss);

then a clcan mniss occurs (no write-back) on the line just evicted and, finally, a dirty

miss occurs that evicts the line in question. This series of activities provides the

mininum time between updates to the VT associated with a single cache line. A 32-

bit VT would wraparound in several hours tinder this worst case scenario and for a

16-bit VT the time to cycle would be less than half a second, based on the operation

timing figures developed in section 4.5.4. Of course this worst case scenario

generates dirty misses on a single line much more frequently than one would expect

to encounter in practice, but the very short wraparound time for a 16-bit VT pos, - a

serious problem even for normal operational environments.

To avoid this problem, it is necessary to change the key used to encipher cache

lines, before a VT can wrap around, since no weakness results if the duplicate VTs

arise tinder different keys. Since there are 256 distinct keys for the DES, there is no

concern over running out of keys based on any practically attainable rate of key

change. Thus one key, the TRM master key, is used to protect secondary storage

units and, in some systems, T&A storage units, but a succession of random keys will

be used to protect cache lines. The transition from one cache line key to the next

must be carried out in a fashion that does not disrupt system operation nor degrade

performance. The mechanism developed for this task can be thought of as a

continuous cryptographic refresh of primary memory.

Cryptographic refresh is an activity (independent from the calculations taking

place at the processor) directed by some control logic included in the memory bus

SSI. It uses the crypto chips in this SSI along with sonic additional registers and a

cache line buffer. Two working keys are identified in this SSI: WK and WK.

Before the cryptographic refresh process starts, all cache lines in primary memory

are encrypted Linder WK. The process begins with the generation of a (pseudo)
I
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random value for WK . A register, which tracks tile progress of the process, is set to

the address of the highest numbered cache line in primary memory. The Vi' for this

line is retrieved from he VT, the line is fetched from prin'iry memory and

decrypted and its EDC is fetched, decrypted and checked. Assuming no error is

detected, the line is encrypted under the next working key (using a vr of 1) and

stored in primary memory, the EDC is encrypted and stored, and the VIT is

updated to reflect the reset VT. '[his process continues through all of primary

memory until every cache line has been transformed, completing a pass of the

refresh. Then WK is set to WK2 and the process begins again.
1 2

At any time during this process, it is possible to determine w hich of the two keys

held in the crypto chips should be used to encipher/decipher a cache line by

referring to the register that tracks the progress of the refresh pass. If the requested

cache line is the one currently being processed, it is already buffered in tile SSI (in

the clear), so it is immediately available and the question of' which key to use is

avoided. This refresh process operates at the lowest priority with respect to use of

the crypto chips and the memory bus, pre-empted by memory requests fiom the

processor or fiom the I/O bus, thus it should not perceptibly affect system

performance. The critical timing requirement for this process is that a refrcsh pass

must complete before \r- wraparound occurs. Fquation 4-1 expresses the

relationship between tlhe mean time between cache write-backs (AlTWB) for a

single line, the time required to refresh a cache line (7) and the amount of primary

memory (P), expressed in cache lines, that can be refreshed before a 16-bit VF

wraparound occurs. (The .9 factor arises from the observation that the memory bus

and its SSI are idle, and thus available to the refresh process, about 90% of tle time

in systems configured in this fashion.)

P/T (.9 * 216 * MTBWB (4-1)
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l'hc rcl'csh ofa cache line involves a Read of the line IUlowed b) a Write of the
rcislshcd line, requiring about he same time as a dilly cache miss. In the worst case

VT update scniario, the VF" of a single line can he updated in about 1.5 times the

dirt) niss time (" = 1.5 * MTBWB) duC to the inclusion of the clean miss between

the two dirty misses. At this rate the maximunim primary memory size would be a

little over 2.3 Mbytes for 32-byte cache lines. However, as noted earlier, this

especially abusive pattern of memory references is not likely to arise in practice and

larger primary memory configurations can be supported if a mechanism is provided

to prevent wraparound in the case of an attack based on maximum rate VT

updating. To prevent a security breach, the memory bus SSI will refuse to write-

back a cache line if its VT would wrap around (simple overflow detection), halting

the system instead. Hence, in practice, very large primary memory configurations

will be supported comfortably since the MTBWB is likely to be much longer than

the worst case figure projected above. Thus the cryptographic refresh technique

permits the use of small (16-bit) V's without sacrificing security or degrading

performance.

4.5.3 A VTT Hierarchy and VTT Cache Management

Employing 16-bit VTs, the cache line VTT requires 6.25% of the space devoted to

cache lines, e.g., a IM-byte primary memory needs a 65538-byte Vii. This VMF

either can be contained wholly within the TRM or it can be hierarchically organized

and stored in primary memory with only a portion of it cached within the TRM.

Although this choice is analogous to that presented at the level of encrypted

secondary storage, there are some important differences. For example, if the VIT is

TRM-resident, it probably will be stored using primary memory chips since high

spced (cache) memory chips offer only a slight overall performance advantage. But

if a VTI' cache is employed, the higher speed chips may be required in the TRM to
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offset the added dela)s imposed by the cache lookuip procedure. Moreover, the

quantity of primary niemory that is attached to i system is often more tightly

bounded than the number of secondary storage volumes that may be registered with

a system, making it feasible to construct a TRM with a VI large enough to cover a

likely range of primary memory configurations. Finally, the complexity of the

control logic and the size of the auxiliary storage needed for the management of the

ViT cache also motivate incorporation of the whole V1I in the 'TRM. To

understand the tradeoffs involved, it is necessary to examine the details of managing

a hierarchic VIT and its cache versus a TRM-resident VIT.

The organization and management of a R'FRM-resident VIT is trivial. Storage is

provided so that each cache line in primary memory has a corresponding 16-bit VT,

indexed implicitly b) the cache line address. A lookup of a VT is accomplished in

one access to this table and should require about two cycles: one cycle for memory

access and one cycle for (round-trip) transport within the TRM. A store into the

VTf of an Updated VT is accomplished similarly and in the same amount of time.

ihe cryptographic refresh process interacts smoothly with this arrangement. The

disadvantages of this scheme are the increase in TRM size and complexity due to

the inclusion of the memory chips for the VTI" and the constraint placed on main

memory configurations by the size of this VT. If 64K-bit memory chips are

employed, then a set of 9 (parity included) will support tip to a iM-byte primary

memory. If 256K-bit chips are employed then a similar chip set will support ip to a

4M-byte primary memory configuration.

If the VTT is not wholly TRM-resident, a simple, two-level hierarchy will be

employed as part of a VTF encachement scheme. '1lie bottom level of the hierarchy

consists of the VJT divided into cache line-sized pieces and the top level (root)

consists of VI's for these VT'I lines. The 1TT root table is permanently resident in

the TRM along with the V77 cache and the I,'T cache lookup table. This last table
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is used to determine if the VT Ibr a requested cache line is in the Vii' cache and, if

so, to locate that VT. Each VT in the Vi'" root table covers a cache line of V's

which in turn covers 16 data cache lines, so the V11 root occupies space equal to

.2% of primary memory. eh Vii" cache contains one line for every line in the data

cache, to accommodate a worst case situation in which each line in the data cache is

covered by a different VT]" cache line, plus a couple of additional entries for reasons

explained later. (Note that entries in the VIi cache do not correspond directly to

lines in the data cache since one VI' cache entry could cover up to 16 lines in the

data cache.) Entries in the VTI cache are 32-byte lines, plus a modified bi, an il-use

bit and a reference count for use by the replacement algorithm. This the VF'" cache

is roughly the same size as the data cache (about 3% larger).

ilie VI' cache lookup table contains one entry for each block of 16 data cache

lines in primary memory, i.e, the set of data lines covered by a VT" line. If the VT

for a data cache line is in the VTF cache, the corresponding lookup table entry

contains the index of the containing V'7 cache line, otherwise the entry is marked

as empty. This table is about half the size of the VIT root table since the unit of

coverage is the same and the V'1I' cache indices are about half the size of VTs. A

likely size for the data cache is 8 Kbytes. Using 32-byte lines, a total of 256 lines fit

in this cache, yielding a cache index size (for VIT cache lookup table entries) of 8

bits and a reference count (for VF]" cache entries) of 8 bits. Thus, in total, the tables

employed in the VIi caching scheme -,.mount to about .4% of primary memory for

the Vi" root table and the V-I1 cache lookup table, and about 103% of the data

cache for the VMi" cache. For example, a IM-byte primary memory system requires

a total of about 12 Kbytes of additional storage within the TRM to hold the various

tables and the V'lT cache, compared to the 64-Kbyte VTI that would migrate into

the TRM if caching were not employed. For a 2-Mbyte system, the figures are

about 16K bytes versus 128 Kbytes.
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1he VTF cache operates as follows. When a (clean) data cache miss occurs, the

VT for the requested cache line must be retrieved in order to decrypt this line. lhe

VIT cache lookup table is checked to see if the required VT is present in tic Vl'r

cache. If the \q is present, the lookup table entry and the low order bits of the

address of the requested cache line are used to index into the VIT cache. There the

required VT is retrieved and the reference count for that VIT cache line is

incremented. If the data cache miss was dirty (implying a write-back), the same

procedure is followed so that the requested data line can be Read first, then the VT

for the evicted line is retrieved as above, the reference count of the containing VIT

cache line is decremented and the modified bit is set. (The VT for the evicted line is

always present in the VT cache.) If the VT for the requested data line is not present,

a VTT cache miss occurs. This miss must be processed before the data cache miss.

Processing of a VIT cache miss is the same as for a data cache miss with the

exception of the replacement mechanism.

The reference count associated with each VTT cache line reflects the number of

data cache lines covered by it, and the in-use bit indicates if the entry is empty or

occupied. Scanning of the VE' cache to free lines can take place either on a

demand basis (when a VT' cache miss occurs) or as a background activity like

cryptographic refresh. Lines in the VT' cache with a reference count of zero are

eligible for replacement and, if unmodified, are marked as empty and ready for

immediate reuse. Modified lines with a zero reference count are evicted, updating

the VT entry in the root table, and then marked as empty. The two extra lines in the

VIT cache noted earlier are included to guarantee the availability of at least one

empty V.7 cache line even in the worst case VTT occupancy scenario (since these

lines can have no counterparts in the data cache). One of these lines is used by the

cryptographic refresh process to hold the VIT line covering data lines currently

being processed. Using this arrangement the refresh process accesses the VIT in the

same way as the data cache. Even the WIT is refreshed in the usual way, resetting

the root table entries as each line of the VF is refreshed.
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Thus a data cache miss that generates a VTT cache miss experiences an added

delay that includes the time it takes to locate a free or freeable VTf cache entry plus

a Read or a Read and a Write, Ibr a clean or diro VIT cache miss respectively. This

added delay could easily increase the time rcquired to satisfy a data cache miss by a

factor of 3 or more. Hence differences in perlbrmance between a TRM-rcsidcnt

VIT design and a \VT cache design spring from two sources: the extra lookup

associated Mith each data cache miss (to determine if the required VT is in the VIT

cache and to ascertain its location if present) and the added delays resulting from

\TV cache misses. The extra lookup step results in an increase of about 11-27% in

effective memory access on a Read, versus 8-18% for a TRM-resident V17,

assuming primary memory chips are used for the VIT cache and tables or the

resident VIT. Use of cache memory chips lbr the V\Tr cache and tables would

equalize this difference between the two designs, based on a twofold access time

improvement as a result of using the faster memory chips.

Since the VT cache represents a relativcl) large percentage of the VIT for most

systems (fiom 50% for a 256K-byte system to 12.5% for a IM-byte system), its hit

rate should be very high (on the order of 98% or more) and the added delays on

VIT cache misses should constitute a negligible increase in effective memory access

time. Thus the TRM-resident VT[ offers design simplicity and good performance

at the expense of a larger TRM, whereas the VTF cache engenders a complex design

and reduced performance but a more compact TRM. Considering the complexity

of the control logic for the VTT cache, it is not clear where above the 128K-byte

primary memory size the breakeven point in TRM size lies between the two designs,

especially if less dense high speed memory chips are used to improve performance

of the VIT cache design. Thus the choice between a TRM-resident or encached

VIT is not clear. The following descriptions of encrypted primary memory I/O

assume the existence of a TRM-resident Vii to simplify the discussion. However,

the differences that would result if the encached VT7 design were adopted are

noted and timing for the encached Vi7 design are provided in parentheses.
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4.5.4 Encrypticn and EDC Calculation for Cache Lines

Thie cryptographic methods employed for T&A and secondary storage are not

suitable for encrypted primary memory. In most computer systems the fetch olf a

cache line begins with the requested word (doubleword), which may not be the

"first" word of the line, in order to minimize the delay associated with a cache miss.

Any cryptographic method employing chaining imposes an ordering on the

decryption of data and this is incompatible with the mode of cache operation cited

above. Moreover, the minimum 5-cycle delay imposed by block mode decryption is

at odds with this low-delay approach to satisfying cache misses. This suggests that

the stream cryptographic method employed in the encrypted bus approach may be

appropriate here. For encrypted primary memory, the cryptographic bit stream will

be based on the IV formed fiom the cache line VT and the primary memory

address, rather than on a counter and bit stream ID used in the encrypted bus

approach. (Combined, the VT and address contribute about 36 bits to the 64-bit IV

with the remaining 28 bits supplied by a fixed, per-TRM constant, just as in

secondary and T&A storage.) This choice of IV limits pre-computation lead time

since the bit stream cannot be calculated until the address and VT of the cache line

are known, but the resulting delay is still better than that available through block

modes.

This stream cryptographic method provides no propagation as an aid in detecting

modification, so a separate EDC must be calcuilated. In the encrypted bus approach,

a shortened (5 round) DES calculation was performed on the data and its address

and the resulting CEDC was concealed for transmission uinder stream encryption.

In the encrypted primary memory context, the doublewords that comprise a cache

line are processed using the shortened DES calculation to yield four, 64-bit,

preliminary CEDCs. These preliminary CEDCs must be combined to yield a 16-bit

final CEDC that detects not only modification of individual doublewords but also
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positional modilication on double\%ord boundaries, i.e., permutations of the

double\ords in the line. This requirement is met by selecting 16 bits fiom each

preliminary CEI)C, concatenating theni in an order based on positions of the

doublewords in the cache line and processing this 64-bit quantity through a

shortened DES. The final CEDC consists of 16 bits selected 1rom this last

processing step. This CEDC is concealed in the CEDC table in primary memory

under stream encryption using the address of the CEDC and the cache line VT as an

IV.

It is instructive to note why this particular method was chosen to calculate

CFDCs for cache lines. Ilie final CFDC could have been formed by chaining

together the CEDC values from the cache lines, as was done in the aggregate secure

transactions described in section 3.4.1. That method involves one (shortened) crypto
operation per doubleword, fbur for the eight-word lines used here, and thus one
might e-<pect improved performance siice the method proposed here requires five

(shortened) crypto operations. However, on a Reatd of a cache line, tile words in

that line are fetched in an order determined by which word caused the miss. If the

CFDC calculation was based on tile chaining method used earlier, the calculation

could not even begin until the first word of tile cache line arrived. The CEDC

calculation method adopled here is independent of the order of arrival of the words

in the line and thus does not encounter delays o'- this sort. 'Iliese considerations

guided the choice of CFDC calculation methods.

The preceding descriptions of encryption and CEDC calculation are utilized in

Read and Write operations in the fbllowing fishion. First consider a Read

operation, i.e., the response to a cache miss or the ftirst step in the refresh of a cache

line, as depicted in Figure 4-6. 'The operation begins with transmission of the

address for the doubleword containing the requested data (TI) and the lookup of

the VT associated with the cache line containing that doubleword (AI). In an
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address data data data data conf

Crypto

Bus Ti T2 T3 T4 T5 T6 T7 T8 T9 HJO T11

P-Mem A2 A3 A4 A5 A6 A A8 A9

Figure 4-6: Event Graph for a Read of an Encrypted Cache Line

encached V'TT design two lookups take place and, to minimize delay, the operation

proceeds tinder the assumption that the required VT is in the cache. If a V'T cache

miss occurs (detected after the first lookup), the request to primary memory for the

data line is aborted and the VIT miss is processed. Ilic fetching and transfer of the

cache line begins with the doubleword containing the requested data and proceeds

through increasing addresses, modulo the cache line length (A2-A9,'2-1'9).

Cryptographic bit streams for deciphering the cache line are generated using the
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cache li11C VF an1d thle addre-SSeS of'11 LItheII doil I sIn the line (CI -C4). Thcise bit

streamlls .1r" coihbi ned (Nia nIodulo1 2" MdItu )n) v ith the doublew'ords transferred

fr ominiar 111111eyiiiorv\ to effect decry ption (X 1-X).

Fach (lecr~pted douibleword is delivered to the cache and delivered for thle

prchiiiinar CFLC calculations (Fl-H) and the result is processed to yield the final

CFDC (1-15) as described above. Ilie stored CE-DC is retrieved uIsing a normal1,1 (n)ot

e\tCet'ld) buLS transaction directed at thle appropriate CFDC table location

(1l0,A 10,11!1). T'he bit str-eam for the CEDC is generated uIsing thle VTr and the

word address or the CEDC (CS) anld is combined with the hali'Word containing the

Cl:DC (M5). This decrypted quan,11tity is compared against the calcuilated final

CFDC to verify thle au~thenlticity, Integrity and timeliness of the retrieved cache line.

Figtire 4-7 presents the timing diagram for a Read of anl encrypted cache line.

Crypto devices 1-4I calculate tile cryptographic bit stream and the preliminary

CFDC fbr thle cache doublewords and device 5 calculates the final CH)C and

generates thle bit streamn to conceal this CFDC. The staggering of these processing

steps may be used to reduce simullltaneCous demand onl Internal busses; it is

esthetically appealing and is consistent with thle precedence graph. In this diagram

the fetch of the VT is accorded two cycles but, if a \1T cache is employed, the V-1,

fetch time would inIcrease to fotIr- Cycles, even on a VFI' cache hit.12 'T'he requested

data is available 7 (9) cycles after the operation begins, thle (TFDC is available after

14 (16) cycles and thle bus Is busy for 13 cycles. Tlhe delay onl data delivery is 4 (6)

cycles greater than in a standard system or a comparable encrypted bus

Configuration and tile CFDC delivery delay is () (11) cycles greater than inl such an

encrypted bus design. Bus litilitation increases by 30% (3 cycles) over a comparably

2,heparenthesized figures throughot the remainder of this section indicate dhe timing for
systems with a V'I'Icache, assumning a hit on that cache.
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Figure 4-7: Timing Diagram for a Read of an Encrypted Cache Line

configured standard system but, since utilization is very low in these systems, this

increase is significant only if it delays the initiation of another Read. Since the mean

time between misses is e.pr ed to be on the order of 50-125 cycles (95-98% hit rate

and average instruction length of 2.5 cycles), this delay probably has a negligible

impact on system performance.
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cdc

addiess dala data data data ack ack

CI y! yto

Figure 4-8: Event Graph for a Cache Line Write

Now consider a Write operation, i.e., the eviction of a modified cache line or part

of a cache line refresh, as depicted in Figure 4-8. When a cache miss results in the

eviction of a modiiied line the evicted line is buffered, the requested line is Read

and then the Write of the evicted line takes place. This strategy results in all cache

misses delivering the requested data after the same delay, even if a write-back is
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required, unless buflr space for evicted lines is exhaustcd [6]. 1 he opcliatl( n hcgris

with the lookup and update of the VT for the evicted cache line (A 1). Ilhis VI is

combined with the doubleword addresses of the line and used to generate

cryptographic bit sreams (CI-C5) for concealing the data and the CF)C. The

doublewords (in increasing order) are combined with the bit streams (X I-X4),

transmitted and stored in the appropriate memory locations (Ti-''9, A2-A9) and

acknowledged (T0). 'he preliminary CEDCs are calculated on these doublewords

(El-F4) and the results are used to calculate the final CE)C ([5) as described

above, 'llie final CFDC is concealed by combining it with 16-bits from ('5, and the

resulting halfword is transmitted and stored in the CEDC table ('I I-TI2,A 10).13

Figure 4-9 presents the timing diagram for a Write of an encr pled cache line.

The crypto unit utilization is the same as for Read operations. This operation

requires 19 (21) cycles to complete and the bus is busy during the last 13 of those

cycles. This operation is 9 (11) cycles longer than a cache line write in a standard

system and 6 (8) longer than in a comparable encrypted bus system. Bus utilization

is 30% greater than for a standard system and about 8% greater than for an

encrypted bus system. (These figures assume the encrypted bus system incorporates

separate bus lines for CEDC transmission, whereas the encrypted storage design

employs a standard system bus.) As long as Write operations are adequately

buffered, the added delay should not adversely affect performance. Again, given

the very low bus utilization characteristics of these systems and the large mean time

between misses, the additional bus cycles consumed for these operations should not

significantly affect performance. Since most Write operations result from evictions

triggered by Read operations, Figure 4-10 shows how the two operations mesh when

13Ticre is a potential problem here in that only the halfword containing the CFI)C for the
affected cache line should be modified. If the primary memory does not support this fonm of partial
word modification, then the whole word must hc f'etched, the relevani halfword modificd and the
whole word stored, increasing bus utilization and the effective cycle time for tie Writc operation.
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Figure 4-9: Timing )iagram for a Write of an Encrypted Cache Line

combincd. Note that the tolal time for the combined operations is less than the sum

of the independent operations due to overlap in processing steps.
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Figure 4-10: Timing Diagram for a Combined Read-Write Operation
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As in the encrypted bus approach, there is a choice between delivering requested

data immediately or deferring delivery until the CFDC is checked. However, in this

case the CEDC is associated with the entire cache line, not individual words, and

thus cannot be checked until the entire line, and the CEDC, have been transferred

and decrypted. The increase in apparent memory access time associated with

deferred delivery amounts to only 4-9% (for cache hit ratios of 98% and 95%

respectively) for the encrypted bus approach, but here it would be anywhere from

20-50%. Immediate delivery in the encrypted storage approach results in an

effective memory access time increase in the range of 8-18% (11-27% for a V'IT

cache design using primary memory chips). These figures strongly motivate

adoption of the strategy of delivering data immediately and checking the CFDC on

a delayed basis. If'a potential security violation (i CEI)C mismatch) is detected on a

fetched cache line, the system halts, the violation counter is incremented and the

system must be re-initialized. (Because the delay before the CEDC check is much

longer here, it would be much harder for a processor to "back Out" in response to

the violation.) This is a drastic response but it appears justified as only deliberate

attempts to violate the protection mechanisms are likely to trigger it.

4.6 Conclusions

The techniques developed in this chapter enable a computer system constructed

using a single TRM and off-the-shelf storage devices outside that TRM to protect

externally supplied software from disclosure and undetected modification. Several

important concepts were introduced in this chapter to achieve this goal. Two

concepts are fundamental to the protection mechanisms employed at all levels of

storage. The first is the use of version tags (VTs) to form version-differentiated

names for cryptographically transforming storage units. The second is the use of a

protected version tag table to provide a basis for verifying the timeliness of storage
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units on Read operations. For transfer and archival storage, the archival VTF and

its associated update table provide a robust nlechanisin for enforcing reloading

constraints for most- recent-only and non-reloadable files. The four-level hierarchic

decomposition of the secondary storage VTV and appropriate caching of portions of

this hierarchy makes the use of encrypted secondary storage feasible. Finally,

cryptographic refresh for encrypted primary memory permits the use of small VTs

with cache lines, significantly reducing the amount of memory devoted to security

overhead.

T1he encrypted storage approach offers a number of advantages over the

encrypted bus approach, especially in configurations such as S'S'ITN1 E and

SYSTEM F. Only with the adoption of encrypted storage techniques does secure

T&A storage and demountable secondary storage become really practical. Off-the-

shelf, demountable magnetic media are supported directly in this approach for these

levels of storage. The only special requirement for these media arises in the

secondary storage context where sector size must be increased slightly. However,

most media are readily formatted to accommodate the larger sector size, so this is

not a problem in most cases. I1ie storage overhead for EDCs and Vrs is small for

both T&A and secondary storage, so this penalty should be quite acceptable.

Management of the archival VTl is simple and should not perceptibly affect

performance. The secondary storage Vi'r hierarchy requires more sophisticated

management but still should not degrade system performance noticeably if primary

memory is expanded to accommodate the VT caches.

"These security measures for T&A and secondary storage provide reduced cost

and increased flexibility with only minor storage and performance overhead

compared to comparable encrypted bus measures. The only significant potential

drawback associated with these encrypted storage techniques is the loss of

transparency, i.e., these techniques do require significant participation by the TRM
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operating s)steni. towever, this disadvantage seems small compared to the

advantages offered by this approach. At tile encrypted primary memory level the

storage overhead and performance degradation are more severe and the complexity

of the "TRM increases significantly. 'ne cost or SiS'EmN If in the encrypted

primarq memory approach may be comparable to that of SYSTEM D in the

encrypted bus design due to this storage overhead and increased complexity, so the

choice in this case is not so clear. Of course, S'STEM I1 does offer greater

flexibility in primary memory configuration and maintenance, but the comparison

between the two configurations is complex. Perhaps a more inIportant question is

whether either S's'r'ENi 1) or SYSTEM F is preferable to sisrEm 11.

A major motivation for the adoption of SYS''EM I1 over SYSTEM F is the

reduced size and cost, and presumably increased reliability, of the 'RM in the

former system. Of course there are other reasons for employing encrypted primary

memory, e.g., increased flexibility in configuring and maintaining primary memory,

but these are secondary in many applications. However, moving primary memory

out of the TRM requires the addition of another SSI in.olving five crypto chips and

control logic to support cryptographic refresh. It requires storage within the TRM

either for the whole encrypted primary memory VT1" or for the VIT cache and

auxiliary tables and not inconsiderable control logic to manage the cache. Finally,

this configuration requires the inclusion of a data cache and control logic which

might not otherwise be required to achieve acceptable performance.

Since the crypto chips are very large compared to memory chips and the control

logic chips also take up considerable space, the TRM space savings achieved by

removing primary memory must be carefully analyzed. For many applications very

large primary memories are not required and the ability to extend primary memory

while retaining the same processor is not critical. For these applications a TRM

configured with internal primary memory and encrypted secondary storage may be
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pref'erable as thle I RN wuld not be anm larger and woucld probabl) be more

reliable thanl a TI( 161fu anl enlcr~pted primlarymeoc con higuiration as decrIibed

Ii section 1.5. Thie amount of primary memory thiat can be aiccommodated Ii the

\old left b\ the seculrit) hardware and data cache depends onl die le~ ci of m egnit iOn

emlplo\ ed rol thle conitrol logic and cry )to chips andl thle denisity of primlary miemory'

chiips. Using 25(0 Kbit prma) emiory chips anid custom V'I SI for thle Contriol logic

and cry\ plo chips, oneC could pi obably fit 256-5 12 1K b tes off~ pi MC M0 ieoin INthS

void.

-i nail y one can imagine hy brid designs cu lplo~lI ug a c m hi wit ioll of' thle

encrypted NIS and encr'- pted stora.ge apprIOaIChe0, 1)ue to thIC d1I fLIul of [RMN-

packaging Of demo101tintbl media. .& A and seconidar) storaige are prohablN better

Implemented using encrypted Storage techniqueis. Yet, one might wish to conceal

addresses onl process )r-generated rdc inccs to pilMna lirlveory (to m ii il/c traffic

anl) IIs)Lan this IS aIlabeIN oni) through the u1Se oft ener) ptecl bus tech niques.

lb uS, oneC Might design a dual bus system in whlich pim111ay miemory is TlRM-

packaged and encrypted bus techniques arc em plo) ed to protect tra ffic on thle

miemory bus \ille encrypted storage techiniqutes are used to protect data in

secondaryl) and l&A storage devices on thle 1/0 bus. Ihmow-~c, the cost of providing

separate, TRM-JNI-pckaged1 prIimary memiory (as In SYSTEM[ D ) is Probably even

greater thanIl providing encrypted primary memiory (as Ii SN Si' FAI 11), since about

twice as manly crypto chips are reqtuired in thle li) brid s~ stem. I1ius, as in the

preceding analysis, it is probably more fe~asi ble to i ncorporate pri mary memiory into

the main '[kM (as Iil SYSTEIM F) to achieve tile required protection.
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Chapter Five

Multi-Vendor Systems and

Client Security Requirements

Chapters 3 and 4 dc\eloped several designs that nicet the security requirements

of the vendors of external soliware, i.e., encapsulation of external software to protect

it from attacks resulting in the release or undetected modificationl of information.

These designs assume that all external software executing on the TRM-packaged

compuLer was supplied b a single vendor, i.e., the designs do not address the

probleii Of imuI lti- vendor computer systems. Moreover, these designs do not address

the security requirements of the clients of external software, .e., confinement of

external software to prevent disclosure of client-supplied information to the

"outside world" and to control access of external software to computer resources not

devoted exclusively to the vendor of that software. These two problems can be

unified by viewing the client as a vendor possessing certain extra privileges, e.g.,

control over access to shared system resources. This chapter explores the problem

of designing systems that support client security requirements and external software

supplied by multiple vendors. It examines two approaches to solving this problem:

use of third-party supplied TRMs equipped with secure operating systems and

multi-TRM systems.
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5.1 Confining External Software

Since tile computer systems of interest are under the direct physical control of the

clients, leakage of client-supplied information outside of the client-controlled

environment takes place only through comninication with tile on tside world. The

primary channel for such leakage is the coin mtin icatlion nctwork interface. Other

channels may exist as well, e.g., hardcopy output circulatcd outside the client

environment and maintenance by external vendor personnel, but these are dealt

\%ith by procedural rather than technical security controls. Some personal and small

business computers will not have a network interface, effectively eliminating this

leakage problem. However, distributed systems and nianN personal and small

business computers will have network interflaces and tile problem of leakage will

arise.

The level of difficulty associated with preventing leakage of client-supplied

inflormation depends on the configuration of' the comptter system and what use

external software makes of network communication facilities. In order to restrict

access b) external software to a network, the client must have direct control over the

network interface. If a client's only means of contr)lling this interface is through a

processor and/or software provided by an untrusted vendor, e.g., the vendor

supplying software that is to be confined, then confinement cannot be achieved.

However, a client exercising direct control over this interface can prevent or at least

minimiie leakage of his data in many circumstances. If external software does not

use the network as part of its normal operation, then client-controlled security

niechanisms can prevent the software from accessing the network at all. If external

software uses the network only in a very restricted fashion, then security controls

can mediate access to the fletwork to prevent or severely restrict leakage.
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5.1.1 Preventing Information Leakage in Simple Applications

Consider, for example, external software that establishes a connection to a service

that provides current stock quotations or other infornation based on a tightly

constrained query set. This t pe of external software can be confined reasonably

% ell since the l1o" of information is essentially one-way (from the serxice to the

external software). Despite the one-wax nature of this sort of communication,

external software might try to leak inilormation by signalling over covert channels,

e.g., manipulation of connection flow control parameters, since network protocols

do in\olve some reverse flow of information e\,en for one-waN data transmission.

The rate at which information can be leaked in this fashion can be niade arbitrarily

low if the communication protocol is not implemented by external software but

rather is under client control. A connection-orientcd data transport protocol (see

section 2.3.4) supplied and controlled by the client would be an appropriate

interface for much external software and would provide the client with control over

many covert channels (for suitably constrained network usage).

Even the task of external software re-authorization, i.e., notifying the software

that the client has paid the "rent" and thtis the software should continue to operate,

can be tightly constrained so as to minimize leakage potential (thus achieving a high

degree of confinement). Simple re-authorization procedures do not require any

transmission of data from the external software to the vendor. The software can

maintain a counter of the number of times it is invoked and another counter that

tracks re-authorization notices. Depending on the duration of the rental period and

the nature of the subsystem, a limit is established as the maximum number of

invocations allowed before re-authorization. 14 Thle vendor, Upon receipt of periodic

141f a clock witl bauery backup could be included in the main lI',M, reauthorization could be
based on time (e.g., months) rather than on the number of times external software was invoked by the
client.
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payment, issues a re-authorization notice (incorporating all encrypted form of the

re-authorization counter) to the client, who forwards it to the external software. The

subsystem verifies the re-authorization notice, resets the invocation counter and

increments the re-authorization counter. More elaborate re-authorization

procedures might involve transmission of usage statistics by the external software,

e.g., for billing purposes. The integrity, authenticity and timeliness of these statistics

can be ensured by cokering them and the re-authorization counter with a CEDC.

T'his procedure minimizes leakage potential and thus should prove acceptable to

clients.

5.1.2 Preventing Leakage in Distributed Applications

Security measures of this sort are sufficient for many of the proprietary software

applications that use network facilities. However, in the context of distributed

systems, one may encounter external software that engages in substantial, complex

two-way communication among copies of itself implementing distributed

applications at the nodes in the system. Automated mediation of this sort of

communication to prevent leakage of client data is not feasible, both because of the

complexity of the message exchanges and because the transmitted data may be

encrypted by the external software copies to meet the security requirements of

subsystem vendors. In the simplest case, clients may wish to confine external

software to preclude leakage of information outside of the distributed system user

community. This is readily accomplished since clients can superimpose their own

inter-node communication security measures (using keys available only to members

of the user community), on top of any communication security measures employed

by external software.

However, as indicated above, if clients require a more sophisticated sort of

confinement of external software, problems may arise. Consider, for example,
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external soitware managing a distributed (but not replicated) database containing

inlkrmation supplied by ,arious members of the distributed system user

community. Fach client may place constraints on how inflormation supplied by him

i:; made available to other clients, e.g., data private to each client may be maintained

at his node and database access controls will allow him to restrict access to this data.

Fither the client can rely on the external software to enforce these controls or he can

attempt to mediate inter-node comltlnication inmolving the database management

subs. stel. In this situation automatic mediation is dif[icult at best and is

impossible if external soltware uses encryption to conceal inter-node

CLmnlu nication. Fven if inter-node communication is not cr ptographically

concealed by the external software, e.g., the softare employs cryptographic

methods only for atlhen icit\ and integrity checks, strict mediation of inter-node

comlIluniication would require duplicating the operation of the database subsystem.

Yet such duplication by the client is in direct conflict with the acquisition of external

software!

This problem worsens if clients must rely on a distributed subsystem to enforce

access control policies for data dispersed throughout the system, e.g., fully replicated

distributed databases containing sensitive client data. In this case, communication

among copies of the subsystem may be encrypted by the subsystem (to conceal the

client data transmitted between the copies), thus denying the client any opportunity

of monitoring to prevent or even detect leakage! Clients might be able to trust

external software to enforce an advertised access control policy if they, or a trusted

third parly, could inspect the source code and establish its correspondence to the

executable subsystem installed at each node. Client inspection of proprietary

soffvare is not likely to be acceptable to vendors, but in the distributed system

context, such inspection may be viable when external software is supplied by

members of the user community. In the latter case, disclosure of the software within

the user comunitinitv is not a major concern but protection of the data managed by
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the software must be ensured. What is required, however, is some means of

establishing correspondence between the inspected and installed subsystem copies

without compromising subsystem integrity and while providing for secure

communication among subsystem copies. These requirements can be met using

procedures described in the next section.

5.1.3 Controlling Access to Shared Resources

The other aspect of confinement is controlling access of external software to

computer system resources not exclusively devoted to the vcndor of that software,

'llis security requirement is applicable only in computer systems which support

secure execution of software from multiple independent vendors, possibl including

the client himself. (In a single-vendor system all facilities are a\ ailable exclusively

for the use of software provided by that vendor and any sort of confinement beyond

disconnection of the system from the network is meaningless.) Resources to which

access may be controlled include portions of the storage hici archy, the terminal and

other I/O devices, e.g., the network interface. The guideline here is the principle of

least privilege employed in secure system design, i.e., a subsystem should have access

only to those resources required to carry out its designated function [29].

Access restriction of external software is important for several reasons. For

example, access controls applied to external software often simplify the information

leakage aspect of confinement since software can disclose only that infbrmation to

which it has access. External software that has no access to sensitive client

information poses no leakage threat and thus does not require the sort of network

access mediation accorded external software that does have access to such

information. If the latter software does not use the network and the former does,

the leakage problem is significantly simplified. When secondary storage is shared,

for example, software of one vendor must be prevented fr-om damaging software of
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another vendor (or of the client) and the quantity of storage consumed by external

software should be controlled. With respect to the terminal, the client must be able

to select and identify the software with which he is communicating in order to

prevent confision that could result in violations of client access controls. Finally,

control of access to the network interface, as noted above, is the fundamental means

by which the information leakage problem is managed. Thus, controlling access of

external software to shared system resources really encompasses all aspects of

con finement.

5.2 Computer Systems Supplied by a Third-Party

One way to accommodate software supplied by multiple vendors in a single

computer system is to use one of the designs presented in Chapter 3 or 4 in

Wunjunction with a secure operating system, with all security relevant hardware and

software supplied by a trusted third party. The secure operating system performs

two functions: it protects external software from attacks by other software (the

security mechanisms of Chapters 3 and 4 protect against physical attacks) and it

confines software to control information leakage. In single-vendor systems, the level

of security required of the operating system depends to a great extent on the nature

of the application software provided by the vendor. For example, external software

implementing financial applications or games require less sophisticated protection

mechanisms than external software controlling execution of client-written code on

the vendor-supplied processor. In multi-vendor systems, the operating system must

withstand programmed attacks mounted by vendor or client software in order to

provide encapsulation and confinement of external software. Thus the level of

operating system security required in multi-vendor computers is relatively high.
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5.2.1 Options for Software-Enforced Encapsulation

In the extreme case, the operating system for a multi-vendor computer might

provide a fine-grained prolection domain structure that supports mutually sLispicious

subsystems while providing an invocation mechanism essentially equivalent to

normal procedure calls (see [291). Although several operating systems and machine

•:irchitectures that implement this form of sophisticated protection have been

described in the literature, few have been constructed and none are commercially

aailable at this time. This type of operating system and its associated hardware

support facilities are generally quite complex, in contrast to the simplicity that tends

to characterize the computer systems of interest. Although it is conceivable that

such sophisticated hardwvare and software could be provided in small, multi-vendor

s.stems, it may not be necessary. For many applications, it is not critical that

invocation of external software be as flexible and as fast as normal procedure

invocation. For example, compilers, editors, games or financial application

packages are not invoked with very high frequency: they execute for some time

before completion and are unlikely to make extensive use of other subsystems.

Thus a facility that supports mutually suspicious subsystems but provides a

somewhat less convenient interface than normal procedure invocation might be

appropriate in many circumstances.

A secure virtual machine monitor (VMM) [131 is much simpler to construct than a

filly general protection domain system, yet it can provide the necessary

encapsulation and confinement, albeit with less convenient invocation of external

software. A multi-vendor system can be implemented by using a VMM in which

each vendor is represented by a separate virtual machine implementing a very

simple environment for external software development and operation. The VMM

maps the system resources used by the virtual machines into physical resources. For

example, the VMM partitions physical memory among virtual machines and may
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map a selected portion of virtual machine memory to provide data transmission

between the virtual machine and the VMM. Secondary storage may be provided by

partitioning physical disks into mini-disks that are private to virtual machines (as in

VM/370). The VMM intercepts I/O instructions and translates them so that

accesses to a mini-disk are directed to the appropriate region of a real disk.

Invocation of external software can be effected through inter- irtual machine

coM[nTirI cation. 'lhe VMM can provide communication among virtual machines in

a variety of ways, e.g., b simulating network connections between the virtual

machines.

To a great extent, encapsulation and confinement of external software are

achieved by the implicit isolation of virtual machines provided by the VMM. 1he

client, interacting %ith the VMM directly via his terminal, can act as a sort of limited

system administrator as well as the owner of a virtual machine. This provides him

with the tools necessary to control access to shared system resources, e.g., storage

and I/O devices, but he is not granted the ability to examine unencrypted data

internal to vendor virtual machines. The VMM design makes it especially easy for

the client to control secondary and T&A storage usage and access to peripherals,

since all physical devices are available to the virtual machines only through the

explicit mediation of the VMM. For example, the VMM may interpret and

translate control transactions involving DMA devices and other peripherals as a

matter of course, and access control checking is readily incorporated into these

activities. This design even allows the client to supply software for automatic

mediation of network access in a fashion that is transparent to the vendor virtual

machines, since the VMM mediates such access anyway.

The third-party design requires clients and vendors to trust the supplier of

security relevant hardware (TRMs) and software to provide a product that meets the

security requirements of both parties. It is likely that both parties will want to
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inspect the software to satisfy themselves that it properly implements the

encapsulation and confinement security policies described above. '1he simplicity

and relatively small size of a VMM .'"-kes it more amenable to visual inspection and

automatic verification, and that makes it, ,cceptance by clients and vendors more

likely. (The assumption here is that the th.:d pt-.ty will accept disclosure of the

VM M design and code as a necessary part of his business.) Similarly, the hardware

design and the TRMs must be available for examinalior; Assuming that these

criteria can be met to the satisfaction of both parties, the major rcmaining question

is how to distribute external software to these computers in a lshion that meets the

security requirements of both clients and vendors.

5.2.2 Distributing External Software in the Third-Party Design

'he simplest solution to the problem of distributing external software is to make

the third-party supplier the distributor as well. Vendors could provide the third-

party supplier with their software and he could securely distribute it to clients,

possibly acting as a collection agent for the vendors as wll. lhe distribution could

be carried out using any of the methods described previously using conventional

ciphers, e.g., encrypted transfer storage or sccure down-line loading. TIhis requires a

high level of trust on the part of the vendors since their software is directly available

to the third party, and the clients may be wary of this close relationship between

vendors and the presumably impartial third party. Instead, an approach based on

the use of public-key ciphers (PKCs) for external software distribution may prove

more acceptable to clients and vendors. Using public-key ciphers, it is possible to

eliminate the TRM supplier from the distribution procedure, so that only the

vendor and the TRM-based computer have access to external software.
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The public-key cipher distribution procedure operates in the following fashion.

The third-party supplier provides a public-key cipher facility in a secure portion of

each TRM-packaged computer system. This facility implements public-key cipher

transformations and generates a PKC key pair for use in the secure software

distribution procedure. After the computer is purchased, this key pair generation is

carried out in the presence of the client and some independent agent that serves as a

registrar of* public keys for these third-parly computers. (The third-party supplier

might serve this function and additional witnesses ma be present.) 'The client and

the registrar both supply random inputs to the l'RM for ke generation, providing

unbiased key selection, then they initiate the process. When the key pair is

generated, the secret ke) is held in (erasable) non-Nolatile storage, never to be

knov% n outside the TR M, and the public key is output by theTR M. 'illis public-key

is recorded by the registrar, establishing the correspondence between it, the TRM-

based computer and the client.

To distribute external software to this computer, a vendor checks with the

registrar to establish the association between the public key and the computer in

question. Using this public key, the vendor encrypts a (secret) conventional cipher

key and an identifier, generated by the vendor, for use in secuire down-line loading

or for encrypted storage distribution. Once this initial contact has occurred, a

vendor can identify himself to the third-party supplied computer in subsequent

distribution procedures by using the same secret conventional key and identifier.

The client interacts with the computer to establish his own subsystems in a more

direct fashion based on his direct physical control of the system, e.g., through

console interaction. Since the secret key of the PKC pair is known only to the

TRM-based VMM, only the vendor and the TRM have access to software

distributed in this fashion. Of course, this procedure is meaningful only if TRM-

packaged system components are permanently sealed at the factory, i.e., not subject

to subsequent invasive maintenance procedures. This strongly suggests the use of
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an encrypted-storage design, e.g., SYSTiM G or SYSTEM I from Chapter 4, to

minimize the number of FR %1 -packaged components.

This software distribution procedure based on public-key ciphers meets the needs

of %endors of proprietary %o'tware for many applications. In distributed systems
lemploying this procedure, members of the user comnmunity can act as vendors to

exchange software in a fashion that protects the lender. I lowever, this procedure

does not address the special problem of distributed software that must be trusted to

implement access control policies, e.g., the distributed, replicated database

subsystem described above. If such subsystems arc provided as proprietary software

by a vendor, it is unlikely that inspection of the subsystem source code by the clients

will be acceptable, so at best an independent party might be brought in to certify the

coirectness of such subsystems. If this certification procedure is acceptable to both

clients and vendors, the subsystems can be distributed using the procedure

described above. A vendor would associate a secret key with the subsystem copies

destined for a given distributed system, providing them with -a basis for secure inter-

node commulnication. (The subsystem copies are identilied to one another by the

hardware UID associated with each computer.) If mode nodes are added to the

distributed system, the vendor can supply additional copies of the subsystem with

the same key.

5.2.3 Distributing User-Written External Software in Distributed

Systems

If the subsystem is supplied by a member of the distributed system user

community, the problem is somewhat different. 11we assumptions here are that the

members of the user community will co-operate in this process and there is no

requirement to conceal the subsystem code, but the users are largely atttonomous

and thus harbor some degree of mutual suspicion. 'ITus perspective clients
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(members of the user community) may inspect the code to verify that it implements

an advertised secuLrity policy. However, the user/vendor who wrote the subsystem

cannot directly distribute the subsystem since he cannot be allowed to know a secret

key embedded in the subsystem copies for secure inter-node commu1nication. This

problem can be solved by using a third-party computer with appropriate software as

an installation server for the distributed system. This computer is a shared resource

of the distributed system user community and is operated by them co-operatively.

The installation server acts as a surrogate for uiser-vendors in carrying out the

subsystem distribution process in a fashion that meets the security requirements of

the user community. Readers not interested in the details of how this process is

implemented should skip to section 5.3 (page 226) for a discussion of the other

approach to realizing multi-vendor computer systems.

Figure 5-1 illustrates the flow of messages in this procedure, using an example

distributed system composed of 4 user nodes (A-D) and an installation server node

(E). The subsystem creator, in this example, user node D, initiates the procedure by

transmitting a copy of the subsystem source code to the installation server node (step

I). This transmission is secured using the secret key of the third-party computer

along with an EDC or AICF to ensure authenticity and integrity. The installation

server records this subsystem, assigning it a UID, and compiles the subsystem,

producing the :xectitable object module version. Included in the object module is a

secret key, generated by the server, which the subsystem copies can use to

communicate securely with one another. The server distributes a copy of the source

and objcct module versions of the subsystem to each user node (step 2); the source

code is provided for the inspection and approval of the user and the object module

is made available for immediate installation and activation of the subsystem.

(Distribution of the subsystem can be restricted to a subset of the user community

by informing the installation server of this subset at the time the subsystem is

delivered by its writer.)
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Node A Node B

22

Node E

Node C Node D

Figure 5-1: Secure Installation of a User-Written, Distributed Subsystem

Each transmitted copy of the source and object modules is transformed tinder the

secret key of the installation server to ensure authenticity, then tinder the public key

of the target user node for secrecy, and an EDC is included fior integrity checking.

In order to effect these transformations, the installation server must be provided (in

a reliable fashion) with the public keys of all the user nodes. 11wc public key of the

installation server must be made available to the user nodes to allow'verilication of

this transmission. (If a user node is provided with a public key that does not

correspond to the installation server, the security of the procedure is not violated,

but the node in question will not be able to decipher and load subsystems!) Each

user node VMM, upon receipt, transformhation and verification of this transmission,
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makes a'ailable the subsystem source code Ibr user inspection. If, after examining

the source code, a user approves it, he authorizes his node VMM to install (and thus

acti.ate) the subsystem. Users not wishing to participate in the Subsystem merely

instruct the node VMM no! to install the subsystem.

This proccdhre guarantees that the installed subsystem copies are identical, that

they have been appioved by the users (clients) on whose computers the copies are

executing, that they can communicate securely with one another and that the

suhsI stem ,Ariter cannot circumvent this procedure, i.e., he is bound by the

aIdCrtised access control policy embedded in the subsystem! This is a simple

pro edure and. a, hotigh it requires the users to exercise some care in operation of

the installation subsystem, the procedure meets the stringent security requirements

established fbr distributed systems composed of autonomously managed nodes.15

Moreover, the installation procedure can be effected incrementally, i.e., members of
the distributed system can participate in the installation and use of subsystems at
their convenience. The introduction of a new node into Ihe distributed system

requires registering the node with the installation server, i.e., establishing the

correspondence between the node UID and its public key, before subsystem copies

can be installed at the new node. (This simple task requires supervision by the users

to ensure that the proper public key is installed.)

5.3 Multi-TRM Computer Systems

Although the third-party computer approach meets the security requirements

established for multi-vendor systems, it does require the vendors and clients to trust

the third-part) supplier. Moreover, it may require the supplier to disclose his

1lrojan florse programs could still be a problem here, hut at least the user can examine the
smurce code (perhaps using program verification tools) in an attempt to locate any Trojan Hlorses.
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hardware and software designs and make his system available fbr inspection in order

to satisfy the concerns of the vendors and clients. The problems related to trusting a

third-part) supplier can be avoided if each vendor supplies his own security relevant

hardware and software. This vendor-supplicd hardware and software can be

organized into a computer system that operates much like a distributed system in

microcosm. Each vendor is represented by his own TRM (acting as a node) and the

client controls intcractions among these nodes and acccss to shared system

resources. In this fashion each vendor is responsible for mccting his own security

requirements through the hardware and software encapsulation mechanisms lie

provides, and the client confines the external software through the use of hardware

and software that is completely controlled by him. This approach retains the

simplicity of single-vendor systems yet provides the functionality of milti-vendor

systems as achieved in the third-party VMM design.

5.3.1 Configuration Options for the Multi-TRM approach

The primary drawback associated with this approach is the cost of providing

duplicate TRM-packaged hardware, one system per vendor. However, if the cost of

these systems can be made sufficiently small relative to the anticipated revenues

from sales or rental of proprietary software, this approach may be economically

fcasible and acceptable to both vendors and clients. The need to minimize costs

strongly suggests the use of encrypted storage designs since they involve only one

TRM and can share storage outside the TRM. The TRM designs of SYSTEM G

and SYSTEM It are the most promising candidates as they yield the smallest, least

expensive TRMs and offer the greatest opportunity for storage sharing. Using

either design, the (vendor-supplied) TRMs share secondary and T&A storage and

I/O devices (terminal, net interface, etc.) inder client control. Using the design of

SYSTEM G, primary memory is shared only as a medium for parameter
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PMMS-MEM* T&A* other peripherals

System I

Figure 5-2: A Single BuIS Multi-TRM System Configuration

transmission between processors, i.e., physically unprotected primary memory is

provided primarily for UIse by the client-su~pplied processor since each 'RM

contains built-in primlary memory. A Muhli-TrRM system based on the design of

SYSTEMI 11 could share all primary memnory among all the processors (client and

vendor). ligLires 5-2, 5-3 and 5-4 show three multi-TRM system con figulrations.
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ZS S

CCUU

S-MEM* TA other peripherals

System K

Figure 5-4: Another Dual Bus Mtili-TRM Systemn Configuration

samne access control mechanismis to enforce confinement of external software.

(Rememnber, encapsulation is provided by the rTRM-packaging and encrypted

storage security mecchanisms described in Chapter 4, both of which are vendor-
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supplied). The access control requirements here are generally tile same as in the

VMM design and the mechanisms used to achieve them ma) be quite similar: only

the implementation of the mechanisms is different here. In order to maximize the

use of off-the-shelf system components, e.g., disks and I/O devices, an access control

bus coupler (ACBC) is employed to connect TRM bus(ses) to the main system

bus(ses). The alternatives, enforcing access control at the bus interface to each

shared resource or at each TRM-bus interface, would require additional specialized

hardware. Moreover, access control hardware ma\ introduce sonic delay in bus

transactions and the ACBC design imposes this delay onl\ on accesses to shared

resources by TRMs, i.e., it need not affect performance of the client processor.

An ACBC is the dual of a secure bus coupler (SBC), i.e., the ACBC protects client

eqLiipment from attacks by vendor TRMs in much the same fashion that an SBC

protects TRM-packaged vendor equipment fiom client attacks. An ACBC filters

traffic on the bus(ses) connecting shared resources and the client-supplied processor,

so transactions l)cal to those components are not repeated on the TRM bus(ses).

Tie ACBC also controls TRM access to primary mernor), secondary and T&A

storage devices and various I/O devices, e.g., the terminal and the network interface,

as directed by the client. To properly enforce access control, each TRM must be

reliably identified to the ACBC and confinement requires that transactions

involving one TRM must not be passively or actively wiretapped by other TRMs.

One cannot simply connect multiple TRMs to a single, conventional bus since such

a bus does not preclude passive and active wiretapping attacks by other TRMs on

that bus. Thus each TRM has its own short bus segment(s) connecting it to tihe

ACBC(s) to prevent these attacks by other TRMs.

Since access control details for sonic devices ma\ be quite complex, the ACBC

can be simplified by off-loading some tasks onto the client processor, i.e., letting the

client processor assume the more complex functions provided by a VMM. To

231



Multi-Vendor Systems and Client Security Requirements

facilitate communication with the client processor/VMM, the ACBC can map a

portion of the address space of each TRM into a distinct region of the shared

primary memory (even if the TRMs are configured with built-in primary memory).

Secondary storage may be divided among the TRMs and the client by adopting the

mini-disk concept described earlier. The client processor can maintain the

allocation information needed to simulate the mini-disks and it can load registers in

the ACBC to reflect this emulation when a TRM requests mounting of a mini-disk.

The client processor can translate requests and load appropriate registers in the

ACBC to achieve the desired access control policy. In this fashion the ACBC design

is kept simple and its checking of addresses in bus transactions can be accomplished

quickly, yet a wide range of complex access control finctions can be provided. This

same technique can be applied to the mediation of network communication. If

there is no need to monitor the access of a given TRM to the network, the ACBC

can be directed to allow unlimited access and, if close monitoring is called for, the

ACBC can require the TRM to forward messages through the client processor

where they can be inspected and appropriately constrained.

Access to other shared resources, e.g., the terminal and other local I/O devices is

generally provided on an all-or-nothing basis and is easily controlled by registers in

the ACBC. To control access to shared primary memory, some form of mapping

must be applied to TRM memory references. One or two pairs of base and bounds

registers can be provided in the ACBC for each active TRM to provide mapping

and access control. (In SYSTEM K there are two ACBCs, one connected to the

main system 1/0 bus and the other to the memory bus coupler, and access control

responsibilities are divided among them accordingly.) For shared resources other

than primary memory, the delay imposed by an ACBC should not significantly

degrade system performance due to the inherent delay in accessing those resources.

In SYSTEM I and SYSTEM J the TRMs use shared primary memory only for

inter-TRM communication and for service requests to the client processor, so the

delay imposed by the ACBC should not seriously affect performance.
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In a configuration such as SYSrEN K, tile dela introduced by this mapping

could become a problem. Moreover, the encrypted storage IRM design employed

in that configuration requires cryp(ographic refresh of primary memor b, one of

the TRM SSIs. "hle cryptographic refresh process generates all CnormouLs amount

of bus traffic, which precludes single bus conlitgurations for either the TRM or the

main system. Even using a dual bus configuration for both the TRMs and the main

system, it may be impractical to carry out the cryptographic refresh for more than

one TRM simultaneously. Moreover, the refresh may ciTe~ctirely preclude any

significant activities by the client processor due to the demands on primary memory

bandwidth. Thus, in SYSTEM K, a TRM probably cannot execute software in a

"background" mode while the client processor performs other processing. Even if a

separate, shared primary memory were establishecd solely for the use of TRMs,

software in two TRMs probably could not interact for the same reason. This

severely limits the utility of systems configured in this fashion.

The cost analysis discussion presented at the end of Chapter 4 suggested that one

could provide 64-256 Kbytes of primary memory in the TRM (using 64 and 256-

Kbit memory chips respectively) for less than the cost of hardware needed to

support encrypted primary memory. 11tus economic considerations also may argue

For adoption of private memory TRMs in applications where primary memory size

restrictions are not a problem. Private memory TRMs require only one ACBC, as

opposed to the two in SYSTEM K, reducing system cost and further maximizing the

use of off-the-shelf components. Since the single ACBC in these systems only

controls access to peripherals and the shared primary memory used for inter-TRM

and client processor communication, it need not exhibit extremely low delay,

making it simpler and cheaper to construct. Moreover, primary memory size

limitations in these TRMs may be ameliorated by use of low access time secondary

storage, e.g., bubble memories, as paging/swapping devices. Thus, even though

TRMs using encrypted primary memory offer greater growth potential since the
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shared primary memory is readily expanded, TRMs with built-in primary memory

may prove more appropriate for multi-TRM systems.

5.3.2 A Hybrid Scheme for Distributed Systems

1Tle multi-TRNI design seems especially well suited to use ,With proprietary

software since it avoids problems of trust that arise in the third-party supplier

approach. However, in the context of distributed systems, external software written

bh members of the user community probably cannot take ad\antage of the multi-

iRM scheme in its pure form. First of all, it is impractical to provide at each user

node a separate TRM for the external software supplied by each other user.

Moreover, this scheme would not provide a basis ror a distributed subsystem that

includes its writer as a client! Rather, the ntulti-TRM approach can be used in

conjunction with the third-party approach in the following fashion. Each user node

can emlploy a intihi-TRM configuration in which one of the TRMs is provided by a

third-party supplier and is devoted to execution of subsystems written by members

of the user community. The installation server technique described in the preceding

section is employed for distribution of these subsystems. In this fashion the

advantages of multi-TRM designs are available to the users but the special

functionality required for secure distribution and operation of user-written

subsystems is retained.

5.4 Conclusions

This charter explored the problem of confining external software (to meet the

client security requirement of preventing leakage of client information) and the

related problem of supporting external software from multiple vendors in a single

computer system. In developing protection mechanisms to solve these problems,
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several important concepts and techniques were introduced. '1hc Lm problems

noted above can be unified by viewing the client as a vendor %&ith some extra

I privileges that allow him to control access to sh:ared computer system rCsoLrcCs.

Controlling access to shared resources is a major part of confining external software

since network access provides the primary means of leaking client information. 'I wo

approaches to implementing multi- endor computer systems cere developed: use

of a third party to supply a TRM and controlling software and use of multi-TRM

computer systems.

The third-party supplier approach requires no new hardware technology; it is

applicable to all of the designs developed in Chapters 3 and 4, but it does require

both clients and vendors to trust third-party suppliers. A virtual mlchine monitor

(VMM) can be used to encapsulate external software provided by various vendors

(and the client) and to provide the client with a means of controlling access to

system resources. The performance degradation resulting from use of a VMM

should be acceptable in most application environments. A protocol based on

public-key ciphers can be employed so that the third-party supplier does not have

access to the external software distributed to the systems he supplies. Tlis protocol

can be enhanced so that users can acts as vendors of their own subsystems in the

distributed system context.

The multi-TRM approach to confining external software supplied by one or more

vendors essentially realizes a VMM design Msing separate processors (and, perhaps,

private primary memories) for each vendor and the client. This approach minimizes

the need for trusted third parties at the expense of some additional hardware: one or

two access contrcl bus couplers (ACBCs). The ACBCs filter bus transactions

between the busses for the vendor TRMs and the bus(ses) of the client's processor.

To keep the ACBCs simple, access control policy decisions are made by the client's

processor, which loads appropriate registers in the ACIIC(s) to enforce these
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decisions. If the cost of the TRM-packaged components is suitably small, this

approach may prove more acceptable to clients and vendors, because of the

increased autonomy provided. Performance degradation associated with

configurations implementing this design also should be acceptable for most

applications. Moreover, such performance degradation can be restricted largely to

vendor software; it should not appreciably affect client programs, due to the

existence of a separate client processor and the positioning of access control

hardware in the system con figuration.
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Chapter Six

Conclusions and Topics for Further Research

'i'his thesis has developed and analyzed protection nieclianisis, flbr encapsulating

and confining exter-nally su~pplied software in personal and smiall bIsineCss

computers and certain types of' distributed systems. This chapter summaizes the

results ol, this thesis, reviewing thle key concepts and techiqueIs deVelopeCd heiCN.I

evaluates the encrypted bus and encr~ pted Storage approaches with reCspect to thle

criteria established in Chapter I and discusses the applicabihft3 aud limitations of

these approaches. Il1w chapter concludes by suggesting somec topics 16r fur-ther

resea-rch.

6.1 Review

Chapter I established vendor and client secuiritN reqirements associated withi

external Soft ware. Illese reqiiremnents are derived Fromi those de' eloped lbor

protected subIsystems in centratlized compuiters and thus are more stringent than

those that ne imight propose if only p~roprietary' software wereI' to be prFOtected. as

indicated in the review of related work. For example, other authors have not

addressed the problem of detecting mnodi ficatiomi of external softwareI indig

sensitive databases constructed by the softwvare during execution) or- the problem of

confining such software. The data integrity guarantee su~pports featureCs such as

sophisticated billing and revocation procedti res fi-r proprietary programis and is

essential for miany distributed system applications (see Chapter 5). Thiese extensive,

stringent security requirements yield protection mechanism designs that set this

thesis apart from previous work.
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In Chapter 2 the concept of tamper-resistant niodules (I'RMs) was explored in

,etail. The TRM concept is important since it embodies all of the physical

protection characteristics that are a function of the level of security required in a

particular environment. In this fashion none of the other protection mechanisms

dekcloped throughout the thesis need deal with physical protection issues. 'lhe

monolithic-TIRM design introduced in Chapter 2 illustrated some o1 the limitations

of TRM packaging, motivating the use of crl ptograplhic techniques to overcome

these deficiencies. This design also served to introduce the secure bus coupler

(SBC) in its role as a li!ter of transactions at the bus interface to the main TRM. The

basic features of the SBC appear later in the cryptographic bus interface (CBI) and

the secure storage interface (SSI) on the main TRM.

The encrypted bus approach developed in Chapter 3 introduces several important

techniques in treatment of bus communication between TRMs as a special problem

in communication security. The stream cipher mode developed in that chapter has

been carefully designed to minimize delay and maximize thrughput. In particular,

this mode permits multiple crypto devices to be used in parallel to generate crypto

bit stream at very high rates. The shortened DES calculation employed for CEL)Cs

enables simple secure transactions to proceed at relatively high rates. Use of a

distinct crypto bit stream for each simplex channel supports asynchrony in secure

transaction scenarios. This is critical to the elimination of authentication checks at

the slave during simple secure read transactions (enhancing throughput) and it

allows control and data transfer connections to be combined. Finally, aggregate

secure transactions reduce overhead on data transfers between primary memory and

TRM-packaged storage devices by transmitting a cumulative CEDC at the

completion of the transfer, rather than transmitting a CEDC with each transaction.

Chapter 4 employs cryptographic techniques in a fashion quite different from

Chapter 3, and the encrypted storage approach introduces several important
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concepts and techniques. Version tags (VTs) are employed to form version-

differentiated names for cryptographically transforming storage units, and a

protected version tag table (VTV) provides a basis for verifying the timeliness of

storage units fetched by Read operations. For transfer and archival storage, the

archival V'IT and its associated update table provide a robust mechanism for

enforcing reloading constraints for most-recent-only and non-reloadable files. Iie

four-level hierarchic decomposition of the secondary storage VITi and appropriate

caching of portions of this hierarchy make the use of encrypted secondary storage

feasible. Finally, cryptographic refresh for encrypted primary memory permits the

use of small VTs with cache lines, significantly reducing the amount of memory

devoted security overhead.

Although Chapter 5 is short in comparison to Chapters 3 and 4, it includes several

important designs (at a high level). The problems of confining external Software

and supporting such software from multiple vendors in a single computer system are

unified by viewing the client as a vendor with some extra privileges in a multi-

vendor system. The use of a TRM-based system running a third-party supplied

virtual machine monitor (VMM) achieves the necessary confinement and

encapsulation while minimizing the amount of trusted software. The public-key

cipher protocol used in distributing external software to these computers (and in

installing secure distributed subsystems) is critical to the client acceptance of the

third-party approach. The multi-TRM system approach avoids the need For trusted

third parties and, if economically feasible, it is probably the preferred approach.

Both approaches allow the user to mediate access to the network interface, the

primary means by which information can be "leaked" outside the computer.
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6.2 Comparative Evaluation of the Encrypted Bus and

Encrypted Storage Approaches

]lie primary goal of this thesis has been the design of mechanisns to protect

externally supplied software in small Computers. Chapter I established several

criteria for evaluating mechanisms proposed to achie\e this goal: decentralization,

effectiveness, generality, flexibility, low equipment cost, minimal performance

impact and transparency. The protection mechanisns developed in Chapters 3 and

4 achieve this goal in different ways and meet these criteria with %ary ing degrees of

success. Both encrypted bus and encrypted storage designs are decentralized

approaches to the external software protection problem. These designs employ

small computers installed at user sites and do not require any, "central" computers in

executing the external application software. -11e only time a central system might

be involved is in the distribution of external software or for periodic accounting of

rented/leased proprietary software.

With respect to preventing unintended exposure of information, the techniques

developed in the thesis are fairly effective, i.e., if'l'RMs perform as specified, then

only cryptanalysis or traffic analysis will yield information about the data being

protected. If a suitably strong cipher is employed, then only traffic analysis remains.

Neither the encrypted bus nor encrypted storage approach provides complete

protection against traffic analysis, but one can limit opportunities for traffic analysis

by selecting configurations that package most of the security relevant parts of the

system in a single TRM. Encrypted bus designs provide greater protection against

traffic analysis than corresponding encrypted storage designs since addresses in bus

transactions are concealed in the former but not in the latter. For most applications,

however, traffic analysis will not be viewed as a serious threat, especially at the level

of T&A and secondary storage transfers. With respect to detecting malicious

modification of information, the mechanisms proposed in Chapters 3 and 4 are
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quite effective. An attacker has only a very small probability of circumventing these

mechanisms without being detected (depending on the size of the

EDC/CEDC/AICF employed).

The designs proposed in this thesis exhibit a fair degree of generality and

flexibility. The protection mechanisms meet the security requirements for a wide

variety of applications. Although these mechanisms have been described in the

context of small computers based on a simple architecture, the general techniques

developed here are applicable to a wide range of system architectures,

conliguralions and equipment speeds. This is especially IruC of the encrypted

storage designs for secondary and T&A storage as they are independent of most

configuration and architectural details. Encrypted storage designs also offer

substantial flexibility in equipment selection since they employ off-the-shelf

equipment almost exclusively. Some flexibility is lost in encrypted bus designs due

to possible limitations imposed by TRM packaging of non-volatile (and

demountable) storage media.

Encrypted storage designs involve only one TRM and one or two SSIs whereas

encrypted bus designs involve several TRMs and CBIs in most configurations. Even

though encrypted storage designs waste a certain percentage of stonge (that devoted

to VTFs), this overhead is not likely to offset the added TRM packaging costs

encountered by comparable encrypted bus designs. This is almost certainly true for

systems in which secondary and T&A storage are not contained in the main TRM

and is probably true when primary memory is also outside the main TRM. (This

assumes TRM packaging analogous to the packaging employed for commercial

cryptographic equipment.) With respect to performance, both designs introduce

only a negligible delay in DMA transfers involving secondary or T&A storage not

contained within the main TRM. The encrypted bus designs do hold an edge over

encrypted storage designs in systems where primary memory is outside the main
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TRM. (The expected increase in effective average primary access time is 0-9% for

the former versus 9-18% for the latter.)

The encrypted bus approach also exhibits greater transparency than the

encrypted storage approach. Aside from initialization procedures and recovery

from some errors, most of the prolection mechanisms are managed exclusively by

the CBIs in the encrypted bus designs. In encrypted storage designs, the TRM

operating system must manage VTFs for secondary and T&A storage, thus affording

diminished transparency. For both approaches, applications iust distinguish

between files that must be protected versus those which may be stored unprotected,

and the reloading constraints associated with protected files must be explicitly

indicated. However, these file characteristics are obvious at the time the application

is written and are easily specified as part of an operating system file creation

operation.

Thus, in comparing the two approaches to protecting external software, the

encrypted bus approach offers some advantages with respect to transparency,

performance and susceptibility to traffic analysis whereas the encrypted storage

approach provides greater generality, flexibility and reduced cost. Within a specific

approach, system configuration choices offer a tradeoff of flexibility versus

susceptibility to traffic analysis. Although the selection of a system design depends

on requirements specific to an application environment, one can make some general

observations. In both approaches, the cost of providing primary memory outside

the main TRM is probably too high considering the slight gain in flexibility afforded

by such configurations. When primary memory is contained in the main TRM,

there is little performance difference between the two approaches. For most

applications, the preferred configuration is probably an encrypted storage system

with secondary and T&A storage outside the TRM. The cost, flexibility and

generality advantages of this configuration probably outweigh the traffic analysis
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suisceptibilit) and the reduced transparency affbrded by !his con liguration. 'lhis

configuration is also well suited to multi-vendor, multi-TRM designs.

6.3 Applicability and Limitations

'he protection mechanisms developed in this thesis have been designed for the

express purpose of meeting vendor and client security rqtLirenienls associatcd with

external software in the context of personal and small business computers and

certain distributed systems. The characteristics of these computer systems were

established in Chapter 2. One can ask whether the protection mechanisms

developed in this thesis are especially sensitive to the assumptions embodied in the

s~stem model and whether these protection mechanisms are relevant to other

applications. The answers to these questions are no and yes, respectively.

The protection mechanisms developed in Chapters 3 and 4 are applicable to

computer systems that do not precisely match the system model. For example, in

the encrypted bus approach, the system word size and the number of bus lines

employed do not critically influence the protection mechanism designs. Such

differences are accommodated by changes in the amount of cryptographic bit stream

generated by CBIs, but this does not significantly influence the designs, only some

implementation parameters. Variations in the relative timing of the system

components, including the cryptographic devices, do not seriously affect these

designs although they may require minor changes, e.g. more or fewer crypto devices

may be required. Substantial differences in the structUre of bus transactions may

require some re-engineering, but the design principles developed in Chapter 3

should still be relevant.

Most of the encrypted storage designs are even less influenced by changes in

system characteristics such as word size or device timing, and these designs are
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generally insensitive to details of bus operation. For secondary storage, the most

critical parameter is the sector size. Changes in this parameter influence the

percentage of space devoted to VTI's and EDCs but, unless tile sector size changes

drastically, the impact on design features such as tile V\'T should be negligible.

Onl in the case of encrypted primary memor configurations are word size, cache

operation and timing details critical parameters. Here again, modifications to

accommodate changes in these parameters should be possible within tile context of

the design principles elucidated in the chapter. Moreover, since there is only one

T1RM in these designs, the impact of changes in the protection mechanisn details

influences fek components. The bottom line here is that tile most promising design,

SYSTEMI F, is relatively insensitive to most system characteristics. In fact, since the

transfer rate of many current T&A and secondary storage devices is less than 10

Mbits/s and the Fairchild DFS chip set is capable of over 13 Mbits/s throughput,

computer systems based on the SYSTEM F design could be constructed with

current technology!

Finally, the protection mechanisms developed here can be employed for several

purposes other than those described in Chapter 1. For example, one migh! use

these mechanisms to re-enforce physical security at sites. These measures cannot

prevent destruction of information stored in a computer but they can prevent

disclosure and undetected modification of th information. Thus, one might

purchase a TRM-packaged computer to counter these threats in environments

where controlling physical access to the computer ficilities is difficult or expensive

to achieve. Sonic distributed systems employ a file server that provides basic file

storage facilities that users can access from local nodes. The encrypted storage

approach mechanisms for secondary and T&A storage can be applied by the user

nodes to protect information stored at these file servers. Even some of the

specialized cryptographic techniques developed in Chapter 3 may be applicable to

future communications systems that exhibit very high throughput and very low
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delay and "hich deal in very small messages. '111c imginative reader may discover

e'en more applications for these protection mechanisms.

6.4 Topics for Further Research

Several topics discussed in this thesis merit further investigation. First, the

engineering of IRM packaging should be e\plored in depth. Details of this

packaging will vary depending on the level of protection required, i.e., based on the

anticipated threat environment, and there are a number of problens lurking in this

area. The technology employed in existing de\ices such as commercial

cryptographic equipnient is probably appropriate for some threat en ironments, but

both more and less elaborate packaging must be developed. An intriguing problem

is ihe engineering of tRM packaging for a VLSI impl.-ientation of a processor,

primary memory and SSI in an encrypted storage design for low to moderate

security environments. Very low cost TRM packaging of this equipment might be

possible if it were reduced to a just a few silicon wafers combined in a single

package. (One might store keys in charge-coupled devices and rel. on the inability

of an attacker to disassemble the package without losing the charge on the CCD.)

At the other extreme, in very high security applications, TRM packaging may have

to include devices that destroy the TRM, and perhaps the would-be attacker, if

tampering is detected. This type of packaging is probably unacceptable to the

Consumer Products Safety Comnission for home personal computers, but it may be

appropriate in some military applications.

Additional work also is required in providing detailed designs for the hardware

that implements the protection mechanisms developed in the thesis. For example,

the functions of secure bus couplers (SBCs), cryptographic bus interfaces (CBIs),

secure storage interfaces (SSIs) and access control bus couplers (ACBCs) were
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described, but additional engineering design is required before a "lRM-based

system can be constructed using these devices. In large part these details are a

function of bus characteristics, so a specific bus design must first be adopted, but

other engineering questions must be resolved as A~ell. For example, design details of

bus couplers with integrated CBIs or SSIs and the ACBC must be examined with

respect to buffering requirements and interaction of the control logic associated with

each bus attached to the coupler. Similar design refinenients are required for

ersion tag table (\"T) management at secondary and primary storage levels. For

example, the secondary storage V'F" hierarchy should be tailored to the file system.

For multi-\-endor computer systems there are several problems that require

additional research. If a secure virtual machine monitor ('MNI) is used to isolate

software from diftfrent vendors and the user, then additional research is needed in

the area of provably secure VMM design. Specifications of monitor calls, including

those employed in inter-VM communication, Must be developed if the secure VMM

approach is adopted. hliese calls must be standardized so that vendors can produce

software for execution in this virtual machine environment. If multi-vendor

computer systems are constructed using multiple TRMs, vendors are relatively

unconstrained in their choice of processor and memory design. However, similar

standardization requirements arise with respect to communication between TRMs

and the uIser processor operating system since that OS performs many VMM-like

functions for the TRMs. Moreover, if the ACBC design is to be kept simple, it is

probably necessary for TRMs to employ some standard bus interface. Thus, if

multi-vendor systems are to become a reality, some standardization is required for

both the VMM and multi-TRM designs.

Finally, if the protection mechanisms developed in this thesis are applied to

computer systems that differ radically from those described herein, additional

research will be required to work out the implementation details for these systems.

246



Conclusions and Topics Ibr Further Research

Similarly, adaptation of the protection mechanisms to applications such as the

protection of information stored at distributed system file servers will require

further investigation.

247



Appendix

Expansions of Acronyms Used in the Thesis

The following table provides expansions for acronyms used extensively in this

thesis.

ACBC access control bus coupler

AICF authenticity/integrity check field

CBC ciphertext block chaining

CBI cryptographic bus interface

CC conventional cipher

CEDC cryptographic error detection code

CFB cipher feedback

DES Data Encryption Standard

ECB electronic code book

EDC error detection code

IV initialization vector

PCBC plaintext-ciphertext block chaining

PKC public-key cipher

SBC secure bus coupler

SSI secure storage interface
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T&A transfer and archival

TRM tamper-resistant module

UID unique identifier

VM M virtual machine imonitor

VT version tag

VIT version tag table
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